• Andreas, E. L., and G. Trevino (1997), Using wavelets to detect trends, J. Atmos. Oceanic Technol., 14, 554564.
  • Barbosa, S. M. (2011), Testing for deterministic trends in global sea surface temperature, J. Clim., 24, 25162522.
  • Cryer, J. D., and K.-S. Chan (2008), Time Series Analysis, 2nd ed., 491 pp., Springer, New York.
  • Czaja, A., A. W. Robertson, and T. Huck (2003), The role of Atlantic Ocean–atmosphere coupling in affecting North Atlantic Oscillation variability, in The North Atlantic Oscillation: Climatic Significance and Environmental Impact, Geophys. Monogr. Ser., vol. 134, edited by J. W. Hurrell et al., pp. 147172, AGU, Washington, D. C.
  • Cowpertwait, P. S. P., and A. V. Metcalfe (2009), Introductory Time Series With R, 256 pp., Springer, New York.
  • Draper, N. R., and H. Smith (1998), Applied Regression Analysis, 706 pp., Wiley Interscience, New York.
  • Fatichi, S., S. M. Barbosa, E. Caporali, and M. E. Silva (2009), Deterministic versus stochastic trends: Detection and challenges, J. Geophys. Res., 114, D18121, doi:10.1029/2009JD011960.
  • Feldstein, S. B. (2000), The timescale, power spectra, and climate noise properties of teleconnection patterns, J. Clim., 13, 44304440.
  • Franzke, C. (2009), Multi-scale analysis of teleconnection indices: Climate noise and nonlinear trends, Nonlinear Processes Geophys., 16, 6576.
  • Franzke, C. (2010), Long-range dependence and climate noise characteristics of Antarctic temperature data, J. Clim., 23, 60746081, doi:10.1175/2010JCLI3654.1.
  • Franzke, C. (2012), Nonlinear trends, long-range dependence and climate noise properties of surface air temperature, J. Clim., 25, 41724183.
  • Franzke, C., and T. Woollings (2011), On the persistence and predictability properties of North Atlantic climate variability, J. Clim., 24, 466472.
  • Franzke, C., T. Graves, N. W. Watkins, R. B. Gramacy, and C. Hughes (2012), Robustness of estimators of long-range dependence and self-similarity under non-Gaussianity, Philps. Trans. R. Soc. A, 370, 12501267, doi:10.1098/rsta.2011.0349.
  • Huang, N. E., and Z. Wu (2008), A review on Hilbert-Huang transform: Method and its applications to geophysical studies, Rev. Geophys., 46, RG2006, doi:10.1029/2007RG000228.
  • Huang, N. E., Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu (1998), The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. R. Soc. London A, 454, 903995.
  • Klein Tank, A. M. G., et al. (2002), Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment, Int. J. Climatol., 22, 14411453.
  • Kushnir, Y., W. A. Robinson, P. Chang, and A. W. Robertson (2006), The physical basis for predicting Atlantic sector seasonal-to-interannual climate variability, J. Clim., 19, 59495970.
  • Mallat, S. (1999), A Wavelet Tour of Signal Processing, 2nd ed., 637 pp., Academic, San Diego, Calif.
  • Percival, D. B., J. E. Overland, and H. O. Mofjeld (2004), Modelling North Pacific climate time series, in Time Series Analysis and Applications to Geophysical Systems, edited by D. Brillinger, E. Robinson, and F. Schoenberg, pp. 151167, Springer, New York.
  • Polyakov, I. V., R. V. Bekryaev, G. V. Alekseev, U. S. Bhatt, R. L. Colony, M. A. Johnson, A. P. Maskshtas, and D. Walsh (2003), Variability and trends of air temperature and pressure in the maritime Arctic, 1875–2000, J. Clim., 16, 20672077.
  • Robinson, P. M. (2003), Long-memory time series, in Time Series With Long Memory, edited by P. M. Robinson, pp. 432, Oxford Univ. Press, Oxford, U. K.
  • Theiler, J., S. Eubank, A. Longtin, B. Galdrikian, and J. D. Farmer (1992), Testing for nonlinearity in time series: The method of surrogate data, Physica D, 58, 7794.
  • Wu, Z., and N. E. Huang (2009), Ensemble empirical mode decomposition: A noise-assisted data analysis method, Adv. Adapt. Data Anal., 1, 141.
  • Wu, Z., Huang, N. E., Long, S. R. and Peng, C. K. (2007), On the trend, detrending, and variability of nonlinear and nonstationary time series, Proc. Natl. Acad. Sci. U. S. A., 104, 14,88914,894.