SEARCH

SEARCH BY CITATION

References

  • Anthoine, A. (1995), Derivation of the in-plane elastic characteristics of masonry through homogenization theory, Int. J. Solids Struct., 32, 137163.
  • Bear, J., and A. H. D. Cheng (2010), Modeling Groundwater Flow and Contaminant Transport, Theory Appl. Transp. Porous Media, vol. 23, Springer, Dordrecht, Netherlands.
  • Biot, M. A. (1941), General theory of three-dimensional consolidation, J. Appl. Phys., 12, 155164.
  • Benhamida, A., I. Djeran-Maigre, H. Dumontet, and S. Smaoui (2005), Clay compaction modelling by homogenisation theory, Int. J. Rock Mech. Min. Sci., 42, 9961005.
  • Bouchelaghem, F., A. Benhamida, and H. Dumontet (2007), Mechanical damage behaviour of an injected sand by periodic homogenization method, Comp. Mater. Sci., 38, 473481.
  • Cooper, D. W. (1998), Random-sequential-packing simulations in three dimensions for spheres, Phys. Rev. A, 38, 522524.
  • Coussy, O. (1995), Mechanics of Porous Continua, John Wiley, New York.
  • Detournay, E., and A. H.-D. Cheng (1993), Fundamentals of poroelasticity, in Comprehensive Rock Engineering: Principles, Practice and Projects, vol. 2, Analysis and Design Method, edited by J. Hudson, pp. 113171, Pergamon, Oxford, U. K.
  • Duevel, B., and B. Haimson (1997), Mechanical characterization of pink Lac du Bonnet granite: Evidence of nonlinearity and anisotropy, Int. J. Rock Mech. Min. Sci., 34, 117.e1117.e18.
  • Fritzen, F., T. Bohlke, and E. Schnack (2009), Periodic three-dimensional mesh generation for crystalline aggregates based on Voronoi tessellations, Comput. Mech., 43, 701713.
  • Geers, M. G. D. (1999), Enhanced solution control for physically and geometrically non-linear problems. Part I—The subplane control approach, Int. J. Numer. Methods Eng., 46, 177204.
  • Geuzaine, C., and J.-F. Remacle (2009), Gmsh: A three-dimensional finite element mesh generator with built-in pre- and post-processing facilities, Int. J. Numer. Methods Eng., 79(11), 13091331.
  • Goldsmith, W., J. L. Sackman, and C. Ewert (1975), Static and dynamic fracture strength of Barre granite, Int. J. Rock Mech. Sci. Geomech. Abstr., 13, 303309.
  • He, H. (2010), Computational modelling of particle packing in concrete, PhD thesis, Delft Univ. of Technol., Delft, Netherlands.
  • Hu, D. W., Q. Z. Zhu, H. Zhou, and J. F. Shao (2010), A discrete approach for anisotropic plasticity and damage in semi-brittle rocks, Comp. Geotech., 37, 658666.
  • Jia, X., and R. A. Williams (2001), A packing algorithm for particles of arbitrary shapes, Powder Technol., 120, 175186.
  • Jiang, T., J. F. Shao, W. Y. Xu, and C. B. Zhou (2010), Experimental investigation and micromechanical analysis of damage and permeability variation in brittle rocks, Int. J. Rock. Mech. Min. Sci., 47, 703713.
  • Kiyama, T., H. Kita, Y. Ishijima, T. Yanagidani, K. Akoi, and T. Sato (1996), Permeability in anisotropic granite under hydrostatic compression and triaxial compression including post-failure region, in Rock Mechanics: Tools and Techniques—Proceedings of the 2nd North American Rock Mechanics Symposium, edited by M. Aubertin, F. Hassani, and H. Mitri, pp. 16431650, A. A. Balkema, Brookfield, Vt.
  • Kouznetsova, V. G., W. A. M. Brekelmans, and F. T. P. Baaijens (2001), An approach to micro-macro modeling of heterogeneous materials, Comp. Mech., 27(1), 3748.
  • Larsson, F., K. Runesson, and F. Su (2010), Computational homogenization of uncoupled consolidation in micro-heterogeneous porous media, Int. J. Num. Anal. Methods Geomech., 34(14), 14311458.
  • Lotfi, H. R., and B. Shing (1994), Interface model applied to fracture of masonry structures, J. Struct. Eng., 120(1), 6380.
  • Mahabadi, O. K., B. E. Cottrell, and G. Grasselli (2010), An example of realistic modelling of rock dynamics problems: FEM/DEM simulation of dynamic brazilian test on Barre granite, Rock. Mech. Rock. Eng., 43, 707716.
  • Mahyari, A. T., and A. P. S. Selvadurai (1998), Enhanced consolidation in brittle geomaterials susceptible to damage, Mech. Cohesive Frict. Mater., 3, 291303.
  • Martin, C. D., and N. A. Chandler (1994), The progressive fracture of Lac du Bonnet granite, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 31, 643659.
  • Mercatoris, B. C. N., and T. J. Massart (2011), A coupled two-scale computational scheme for the failure of periodic quasi-brittle thin planar shells and its application to masonry, Int. J. Numer. Methods Eng., 85, 11771206.
  • Nguyen, T. S., and A. P. S. Selvadurai (1998), A model for coupled mechanical and hydraulic behaviour of a rock joint, Int. J. Num. Anal. Methods Geomech., 22, 2948.
  • Oda, M., T. Takemura, and T. Aoki (2002), Damage growth and permeability change in triaxial compression tests of Inada granite, Mech. Mater, 34, 313331.
  • Ozdemir, I., W. A. M. Brekelmans, and M. G. D. Geers (2008a), Computational homogenization for heat conduction in heterogeneous solids, Int. J. Numer. Methods Eng., 73, 185204.
  • Ozdemir, I., W. A. M. Brekelmans, and M. G. D. Geers (2008b), FE2 computational homogenization for the thermo-mechanical analysis of heterogeneous solids, Comp. Methods Appl. Mech. Eng., 198, 602613.
  • Paria, G. (1963), Flow of fluid through porous deformable solids, Appl. Mech. Rev., 16, 901907.
  • Peerlings, R. H. J., R. deBorst, W. A. M. Brekelmans, and J. H. P. deVree (1996), Gradient-enhanced damage for quasi-brittle materials, Int. J. Numer. Methods Eng., 39, 33913403.
  • Rice, J. R., and M. P. Cleary (1976), Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents, Rev. Geophys., 14(2), 227241.
  • Rycroft, C. H. (2009), Voro++: A three-dimensional Voronoi cell library in C++, Chaos, 19, 041111, doi:10.1063/1.3215722.
  • Rycroft, C. H., G. S. Grest, J. W. Landry, and M. Z. Bazant (2006), Analysis of granular flow in a pebble-bed nuclear reactor, Phys. Rev. E, 74, 021306, doi:10.1103/PhysRevE.74.021306.
  • Santos, J. E., and D. Sheen (2008), Derivation of Darcy's law for a porous medium composed of two solid phases saturated by a single phase fluid: A homogenisation approach, Transp. Porous Media, 74, 349368.
  • Schanz, M. (2009), Poroelastodynamics: Linear models, analytical solutions, and numerical methods, Appl. Mech. Rev., 62, 030803, doi:10.1115/1.3090831.
  • Scheidegger, A. E. (1960), General theory of dispersion in porous media, Appl. Mech. Rev., 13, 313318.
  • Selvadurai, A. P. S. (Ed.) (1996), Mechanics of Poroelastic Media, Kluwer Academic, Dordrecht, Netherlands.
  • Selvadurai, A. P. S. (2004), Stationary damage modelling of poroelastic contact, Int. J. Solids Struct., 41, 20432064.
  • Selvadurai, A. P. S. (2007), The analytical method in geomechanics, Appl. Mech. Rev., 60, 87106.
  • Selvadurai, A. P. S., and A. Glowacki (2008), Permeability hysterisis of limestone during isotropic compression, Ground Water, 46(1), 113119.
  • Selvadurai, A. P. S., and P. A. Selvadurai (2010), Surface permeability tests: Experiments and modelling for estimating effective permeability, Proc. R. Soc. A, 466, 28192846.
  • Selvadurai, A. P. S., and A. Shirazi (2005), An elliptical disc anchor in a damage-susceptible poroelastic medium, Int. J. Numer. Methods Eng., 63, 20172039.
  • Selvadurai, A. P. S., A. Letendre, and B. Hekimi (2011), Axial flow hydraulic pulse testing of an argillaceous limestone, Environ. Earth Sci., 64, 20472058.
  • Shao, J. F., D. Hoxha, M. Bart, F. Homand, G. Duveau, M. Souley, and N. Hoteit (1999), Modelling of induced anisotropic damage in granites, Int. J. Rock Mech. Min. Sci., 36, 10011012.
  • Sherwood, J. D. (1997), Packing of spheriods in three-dimensional space by random sequential addition, J. Phys. A, 30, 839843.
  • Shiping, L., L. Yushou, L. Yi, W. Zhenye, and Z. Gang (1994), Permeability-strain equations corresponding to the complete stress–strain path of Yinzhuang sandstone, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 31, 383391.
  • Simpson, G. D. H., Y. Gueguen, and F. Schneider (2001), Permeability enhancement due to microcrack dilatancy in the damage regime, J. Geophys. Res., 106(B3), 39994016.
  • Smit, R. J. M., W. A. M. Brekelmans, and H. E. H. Meijer (1998), Prediction of the mechanical behaviour of nonlinear heterogeneous systems by multi-level finite element modeling, Comp. Methods Appl. Mech. Eng., 155, 181192.
  • Souley, M., F. Homand, S. Pepa, and D. Hoxha (2001), Damage-induced permeability changes in granite: A case example at the URL in Canada, Int. J. Rock Mech. Min. Sci., 38, 297310.
  • Stafford, D. S., and T. L. Jackson (2010), Using level sets for creating virtual random packs of non-spherical convex shapes, J. Comp. Phys., 229, 32953315.
  • Vasconcelos, G., P. B. Lourenço, C. A. S. Alves, and J. Pamplona (2008), Experimental characterisation of the tensile behaviour of granite, Int. J. Rock Mech. Min. Sci., 45, 268277.
  • Vasconcelos G., P. B. Lourenço, C. A. S. Alves, and J. Pamplona (2009), Compressive behaviour of granite: Experimental approach, J. Mater. Civil Eng., 21(9), 502511.
  • Wang, Y., and F. Tonon (2009), Modeling Lac du Bonnet granite using a discrete element model, Int. J. Rock Mech. Min. Sci., 46, 11241135.
  • Wells, G. N., and L. J. Sluys (2001), A new method for modelling cohesive cracks using finite elements, Int. J. Numer. Methods Eng., 50, 26672682.
  • Williams, S. R., and A. P. Philipse (2003), Random packings of spheres and spherocylinders simulated by mechanical contraction, Phys. Rev. E, 67, 051301, doi:10.1103/PhysRevE.67.051301.
  • Yuan, S. C., and J. P. Harrison (2005), Development of a hydro-mechanical local degradation approach and its application to modelling fluid flow during progressive fracturing of heterogeneous rocks, Int. J. Rock. Mech. Min. Sci., 42, 961984.
  • Zhang, H. W., and Z. D. Fu (2010), Coupling upscaling finite element method for consolidation analysis of heterogeneous saturated porous media, Adv. Water Res., 33, 3447.
  • Zhou, J. J., J. F. Shao, and W. Y. Xu (2006), Coupled modeling of damage growth and permeability variation in brittle rocks, Mech. Res. Commun., 33, 450459.
  • Zhu, W., L. G. J. Montesi, and T. F. Wong (2007), A probabilistic damage model of stress-induced permeability anisotropy during cataclastic flow, J. Geophys. Res., 112, B10207, doi:10.1029/2006JB004456.
  • Zhu, W., and T. F. Wong (1997), The transition from brittle faulting to cataclastic flow: Permeability evolution, J. Geophys. Res., 102, 30273041.
  • Zoback, M. D., and J. D. Byerlee (1975), The effect of microcrack dilatancy on the permeability of Westerly granite, J. Geophys. Res., 80, 752755.