SEARCH

SEARCH BY CITATION

References

  • Andersen, O. B. (2010), The DTU10 Gravity Field and Mean Sea Surface, Second International Symposium of the Gravity Field of the Earth (IGFS2), Fairbanks, Alaska.
  • Bingham, R., K. Haines, and C. W. Hughes (2008), Calculating the ocean's mean dynamic topography from a mean sea surface and a geoid, J. Atmos. Oceanic Tech., 25, 18081823, doi:10.1175/2008JTECHO568.1.
  • Bingham, R. J., P. Knudsen, O. Andersen, and R. Pail (2011), An initial estimate of the North Atlantic steady-state geostrophic circulation from GOCE, Geophys. Res. Lett., 38, L01606, doi:10.1029/2010GL045633.
  • Bruinsma, S. L., J. C. Marty, G. Balmino, R. Biancale, C. Förste, O. Abrikosov, and H. Neumayer (2010), GOCE gravity field recovery by means of the direct numerical method, In: Proceedings of the ESA Living Planet Symposium 2010, Edited by H. Lacoste-Francis, ESA Publication SP-686, ESA-ESTEC, ISBN (Online) 978-92-9221-250-6, ISSN 1609-42X.
  • Dee, D. P., et al. (2011), The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc., 137(656), 553597, doi: 10.1002/qj.828.
  • Goiginger, H., et al. (2011), The combined satellite-only global gravity field model GOCO02S, presented at the 2011 General Assembly, Eur. Geosci. Union, Vienna, 4-8 April.
  • Grodsky, S. A., R. Lumpkin, and J. A. Carton (2011), Spurios trends in global surface drifter currents, Geophys. Res. Lett., 38, L10606, doi:10.1029/2011GL047393.
  • Haines, K., J. A. Johannessen, P. Knudsen, D. Lea, M. -H. Rio, L. Bertino, F. Davidson, and F. Hernandez (2011), An ocean modelling and assimilation guide to using GOCE geoid products, Ocean Sci., 7, 151164.
  • Johannessen, J. A, G. Balmino, C. Le Provost, R. Rummel, R. Sabadini, H. Sunkel, C.C. Tscherning, P. Visser, P. Woodworth, C. Hughes, P. LeGrand, N. Sneeuw, F. Perosanz, M. Aguirre-Martinez, H. Rebhan, and M. Drinkwater (2003), The European gravity field and steady state ocean circulation explorer satellite mission: Impact in geophysics, Surveys in Geophysics, 24, 339386.
  • Kaula, W. M. (1966), Global harmonic and statistical analysis of gravity, In: Extension of Gravity Anomalies to Unsurveyed Areas, Edited by H. Orlin, American Geophysical Union, Monograph, Washington, D. C. 9, 5867.
  • Knudsen, P., R. Bingham, O. Andersen, and M. -H. Rio (2011), A global mean dynamic topography and ocean circulation estimation using a preliminary GOCE gravity model, J. Geod., 85, 861879, doi:10.1007/s00190-011-0485-8.
  • Lumpkin, R., and M. C. Pazos (2007), Measuring surface currents with Surface Velocity Program drifters: The instrument, its data, and some recent results, In: Lagrangian Analysis and Prediction of Coastal and Ocean Dynamics, Cambridge University Press, Cambridge, United Kingdom, 3967.
  • Maximenko, N. (2004), Correspondence between Lagrangian and Eulerian velocity statistics at the ASUKA Line, J. Oceanography, 60, 681687.
  • Maximenko, N., P. Niiler, M. -H. Rio, O. Melnichenko, L. Centurioni, D. Chambers, V. Zlotnicki, and B. Galperin (2009), Mean dynamic topography of the ocean derived from satellite and drifting buoy data using three different techniques, J. Atmos. Oceanic Tech., 26(9), 19101919.
  • Mayer-Gürr, T., A. Eicker, E. Kurtenbach, and K. -H. Ilk (2010), ITG-GRACE: Global static and temporal gravity field models from GRACE data, In: System Earth via Geodetic-Geophysical Space Techniques, Edited by F. Flechtner et al., 159168, doi:10.1007/978-3-642-10228-8_13.
  • Mayer-Gürr, T. et al. (2012), The new combined satellite only model GOCO03s. Abstract submitted to GGHS2012, Venice (Poster).
  • Migliaccio, F., M. Reguzzoni, A. Gatti, F. Sanso, and M. Herceg (2011), A GOCE-only global gravity field model by the space-wise approach, Proceedings of the 4th International GOCE User Workshop, 31 March - 1 April, Munich 2011.
  • Migliaccio, F., M. Reguzzoni, F. Sanso, C.C. Tscherning, and M. Veicherts (2010), GOCE data analysis: The space-wise approach and the first space-wise gravity field model, presented at the ESA Living Planet Symposium 2010, Bergen, June 27–July 2, Bergen, Norway, 2010.
  • Niiler, P. P., and J. D. Paduan, (1995), Wind-driven motions in the Northeast Pacific as measured by Lagrangian drifters, J. Phys. Oceanography, 25(11), 2819-2830.
  • Pail, R., H. Goiginger, R. Mayrhofer, W. Schuh, J. M. Brockmann, I. Krasbutter, E. Hoeck, and T. Fecher (2010a), Global gravity field model derived from orbit and gradiometry data applying the time-wise method, In: Proceedings of the ESA Living Planet Symposium 2010, Edited by H. Lacoste-Francis, ESA Publication SP-686, ESA-ESTEC, ISBN (Online) 978-92-9221-250-6, ISSN 1609-42X.
  • Pail, R., H. Goiginger, W. Schuh, E. Höck, J.M. Brockmann, T. Fecher, T. Gruber, T. Mayer-Gürr, J. Kusche, A. Jäggi, and D. Rieser (2010b), Combined satellite gravity field model GOCO01S derived from GOCE and GRACE, Geophys. Res. Lett., 37, L20314, doi:10.1029/2010GL044906.
  • Pail, R., S. Bruinsma, F. Migliaccio, C. Förste, H. Goiginger, W. Schuh, E. Hoeck, M. Reguzzoni, J.M. Brockmann, O. Abrikosov, M. Veicherts, T. Fecher, R. Mayrhofer, I. Krasbutter, F. Sanso, and C.C. Tscherning (2011), First GOCE gravity field models derived by three different approaches, J. Geodesy, 85(11), 819843, doi:10.1007/s00190-011-0467-x.
  • Ralph, E. A., and P. Niiler (1999), Wind-driven currents in the tropical Pacific, J. Phys. Oceanography, 29, s21212129.
  • Rio, M.-H., and F. Hernandez (2003), High-frequency response of wind-driven currents measured by drifting buoys and altimetry over the world ocean, J. Geophys. Res., 108(C8), 3283, doi:10.1029/2002JC001655.
  • Rio, M.-H., S. Guinehut, and G. Larnicol (2011), New CNES-CLS09 global mean dynamic topography computed from the combination of GRACE data, altimetry, and in situ measurements, J. Geophys. Res., C07018, doi:10.1029/2010JC006505.
  • Schaeffer P. et al. (2010), The new CNES CLS 2010 Mean Sea Surface, oral presentation at OSTST 2010 meeting.