The initial stage processes of rocket-and-wire triggered lightning as observed by VHF interferometry

Authors


Abstract

[1] We examine VHF interferometric images, channel-base currents, and broadband electric field waveforms of the initial stage (IS) in two rocket-and-wire triggered lightning flashes. Two types of negative leaders, termed “long-duration” and “short-duration” leaders, were imaged by the VHF interferometers during the IS of the two flashes. There were three leaders that had relatively long durations of more than a few milliseconds. These three leaders were not accompanied by a significant change of channel-base current during their early stages of development, indicating that they corresponded to intracloud (IC) discharges that were not connected to the grounded triggered-lightning channel. Two of these three leaders eventually connected to the triggered-lightning channel and initiated initial continuous current (ICC) pulses. The third long-duration leader apparently developed from the vicinity of an isolated negative charge region toward an upper-level positive charge region and toward a branch of the grounded channel; it served to bridge the positive charge region and the triggered-lightning channel, resulting in the opposite polarity portion of the bipolar ICC. The short-duration negative leaders had durations of some hundreds of microseconds. These negative leaders apparently recoiled along the conductive channels created by branches of the upward positive leader (UPL); they initiated ICC pulses when the grounded channel was sufficiently conductive. It follows that ICC pulses can be initiated either by recoil leaders or via interception of separate in-cloud leaders by a grounded current-carrying channel.

Ancillary