SEARCH

SEARCH BY CITATION

References

  • Arnott, W.P., K Hamasha, H Moosmüller, P J. Sheridan & JA. Ogren, (2005), Towards aerosol light-absorption measurements with a 7-wavelength aethalometer: Evaluation with a photoacoustic instrument and 3-wavelength nephelometer, Aero. Sci. and Tech., 39, Issue 1, doi: 10.1080/027868290901972
  • Baron, R. E., W. D. Montgomery, and S. D. Tuladhar (2009), An Analysis of Black Carbon Mitigation as a Response to Climate Change, 31 pp., Copenhagen Consensus Center.
  • Barrie, L. A. (1986), Arctic air pollution: an overview of current knowledge, Atmos. Environ., 20(4), 643663. doi: 10.1016/0004-6981(86)90180-0.
  • Beine, H. J., S. Argentini, A. Maurizi, G. Mastrantonio, and A. Viola (2001), The local wind field at Ny-Alesund and the Zeppelin mountain at Svalbard, Meteorol. Atmos. Phys., 78, 107113.
  • Bodhaine, B., (1989), Barrow surface aerosol: 1976–1986, Atmos. Env., 23, 11, 23572369
  • Bond, T. C., E. Bhardwaj, R. Dong, R. Jogani, S. Jung, C. Roden, D. G. Streets, and N. M. Trautmann (2007), Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850-2000, Global Biogeochem. Cycles, 21(GB2018). doi: 10.1029/2006GB002840.
  • Bond, T. C., D. G. Streets, K. F. Yarber, S. M. Nelson, J.-H. Woo, and Z. Klimont (2004), A technology-based global inventory of black and organic carbon emissions from combustion, J. Geophys. Res., 109(D14203). doi: 10.1029/2003JD003697.
  • Bourgeois, Q., and I. Bey (2011), Pollution transport efficiency toward the Arctic: Sensitivity to aerosol scavenging and source regions, J. Geophys. Res., 116(D8), D08213. doi: 10.1029/2010jd015096.
  • Brock, C.A., et al. (2011), Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol, radiation, and cloud processes affecting Arctic Climate (ARCPAC) Project, Atmos. Chem. Phys., 11, 24232453, 2011,doi:10.5194/acp-11-2423-2011.
  • Chan, D., M. Ishizawa, K. Higuchi, S. Maksyutov, and J. Chen (2008), Seasonal CO2 rectifier effect and large-scale extratropical atmospheric transport, J. Geophys. Res., 113(D17309). doi: 10.1029/2007JD009443.
  • Chung, S. H., and J. H. Seinfeld, (2002), Global distribution and climateforcing of carbonaceous aerosols, J. Geophys. Res., 107(D19), 4407, doi:10.1029/2001JD001397.
  • Clarke A.D. and K.J. Noone, (1985), Soot in the Arctic snowpack: a cause for perturbations in radiative transfer, Atmos. Environ., 19, pp. 20452053.
  • Cofala, J., M. Amann, Z. Klimont, K. Kupiainen, L. Höglund-Isaksson, (2007), Scenarios of global anthropogenic emissions of air pollutants and methane until 2030, Atmos. Env., 41, 38, 84868499.
  • Cooke, W. F., C. Liousse, H. Cachier, and J. Feichter (1999), Construction of a 1°x1° fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM4 model, J. Geophys. Res., 104(D18), 2213722162. doi: 10.1029/1999JD900187.
  • Croft, B., U. Lohmann, R.V. Martin, P. Stier, S. Wurzler, J. Feichter, C. Hoose, U. Heikkilla, A. van Donkelaar, and S. Ferrachat, (2010), Influences of in-cloud aerosol scavenging parameterizations on aerosol concentrations and wet deposition in ECHAM5-HAM, Atmos. Chem. Phys., 10, pp. 15111543
  • Croft, B., U. Lohmann, R. V. Martin, P. Stier, S. Wurzler, J. Feichter, R. Posselt, and S. Ferrachat (2009), Aerosol size-dependent below-cloud scavenging by rain and snow in the ECHAM5-HAM, Atmos. Chem. and Phys.s, 9, 46534675. doi: 10.5194/acp-9-4653-2009.
  • Croft, B., U. Lohmann, and K. von Salzen (2005), Black carbon ageing in the Canadian Centre for Climate Modeling and Analysis atmospheric general circulation model, Atmospheric Chemistry and Physics, 5(7), 19311949. doi: 10.5194/acp-5-1931-2005.
  • Davidson C.I., R.E. Honrath, J.B. Kadane, R.S. Tsay, P.A. Mayewski, B.W. Lyons and N.Z. Heidam. (1987), The scavenging of atmospheric sulfate by Arctic snow, Atmos. Environ., 21(4), 871882.
  • Davidson, C. I., S. Santhanam, R. C. Fortmann, and M. P. Olson (1985), Atmospheric transport and deposition of trace elements onto the Greenland Ice Sheet, Atmos. Environ., 19(12), 20652081.
  • Dentener, F., et al. (2006), Emissions of primary aerosol and precursor gases in the years 2000 and 1750 -prescribed data-sets for AeroCom, Atmos. Chem. Phys., 6, 43214344.
  • Eleftheriadis, K., S. Vratolis, S. Nyeki (2009), Aerosol black carbon in the European Arctic: Measurements at Zeppelin station, Ny-Ålesund, Svalbard from 1998–2007, Geophys. Res Lett., 36, L02809, 5, doi:10.1029/2008GL035741
  • Fisher, J. A., et al. (2011), Sources, distribution, and acidity of sulfate ammonium aerosol in the Arctic in winter-spring, Atmos. Environ., 45, 73017318, doi:10.1016/j.atmosenv.2011.08.030.
  • Flanner, M. G., C. S. Zender, J. T. Randerson, and P. J. Rasch (2007), Present-day climate forcing and response from black carbon in snow, J. Geophys. Res., 112(D11202). doi: 10.1029/2006JD008003.
  • Forster, P. M., et al. (2007), Changes in Atmospheric Constituents and in Radiative Forcing, In: Solomon; S; Qin D; Manning M; Chen Z; Marquis M; Averyt KB; Tignor M; Miller HL (Ed) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press. Cambridge, U. K. and New York, N. Y., USA.
  • Fromm, M., R. Bevilacqua, R. Servranckx, J. Rosen, J. Thayer, J. Herman, and D. Larko (2005), Pyro-cumulonimbus injection of smoke to the stratosphere: observations and impact of a super blowup in northwestern Canada on 3-4 August 1998, J. Geophys. Res., 110, D08205, doi:10.1029/2004JD005350.
  • Fujita, D., M. Ishizawa, S. Maksyutov, P. Thornton, T. Saeki, and T. Nakazawa (2003), Interannual variability of the atmospheric carbon dioxide concentrations as simulated with global terrestrial biosphere models and atmospheric transport model, Tellus, 55B, 530546. doi: 10.1034/j.1600-0889.2003.00044.
  • Garrett, T. J., S. Brattström, S. Sharma, D. E. J. Worthy, and P. Novelli (2011), The role of scavenging in the seasonal transport of black carbon and sulfate to the Arctic, Geophys. Res. Lett., 38, L16805, doi:10.1029/2011GL048221.
  • Gong, S. L., T. L. Zhao, S. Sharma, D. Toom-Sauntry, D. Lavoué, X. B. Zhang, W. R. Leaitch, and L. A. Barrie (2010), Identification of trends and interannual variability of sulfate and black carbon in the Canadian High Arctic: 1981-2007, J. Geophys. Res., 115(D07305). doi: 10.1029/2009JD012943.
  • Hansen, J., and L. Nazarenko (2004), Soot climate forcing via snow and ice albedos, Proc. Natl. Acad. Sci. USA, 101(2), 423428. doi: 10.1073/pnas.2237157100.
  • Hansen, A., H. Rosen and T. Novakov (1984), The Aethalometer: an instrument for the real-time measurement of optical absorption by aerosol particles, The Science of the Total Environment, 36, 191196.
  • Hegg, D.A., A. D. Clarke, S. J. Doherty, J. Ström (2011), Measurements of black carbon aerosol washout ratio on Svalbard, Tellus B, 63, Issue 5, pp 891900, 2011.
  • Hegg, D., S. G. Warren, T.C. Grenfell, S. J. Doherty, T. V. Larson, A. D. Anthony (2009), Source Attribution of Black Carbon in Arctic Snow, Env. Sci. & Tech., 43, 11, 40164021.
  • Hirdman D., H. Sodemann, S. Eckhardt, J.F. Burkhart, A. Jefferson, T. Mefford, P.K. Quinn, S. Sharma, J. Ström and A. Stohl (2010), Source identification of short-lived air pollutants in the Arctic using statistical analysis of measurement data and particle dispersion model output. Atmos. Chem. Phys., 10, pp. 669693.
  • Hsu, N. S., J. R. Herman, J. F. Gleason, O. Torres, and C. J. Seftor (1999), Satellite detection of smoke aerosols over a snow/ice surface by TOMS, Geophys. Res. Lett., 26(8), 11651168. doi: 10.1029/1999GL900155.
  • Huang, L., S. L. Gong, C. Q. Jia, and D. Lavoué (2010a), Importance of deposition processes in simulating the seasonality of the Arctic black carbon aerosol, J. Geophys. Res., 115(D17207). doi: 10.1029/2009JD013478.
  • Huang, L., S. L. Gong, C. Q. Jia, and D. Lavoué (2010b), Relative contributions of anthropogenic emissions to black carbon aerosol in the Arctic, J. Geophys. Res., 115(D19208). doi: 10.1029/2009JD013592.
  • Huang, L., S. L. Gong, S. Sharma, D. Lavoué, and C. Q. Jia (2010c), A trajectory analysis of atmospheric transport of black carbon aerosols to Canadian High Arctic in winter and spring (1990-2005), Atmos. Chem. Phys., 10, 50655073. doi: 10.5194/acp-10-5065-2010.
  • Ishizawa, M., D. Chan, K. Higuchi, S. Maksyutov, C.-W. Yuen, and J. Chen (2006), Rectifier effect in an atmospheric model with daily biospheric fluxes: impact on inversion calculation, Tellus, 58B(5), 447462. doi: 10.1111/j.1600-0889.2006.00219.
  • Jacob, D.J. et al. (2010), The Arctic Research of the Composition of the Troposphere from Airctaft and Satellites (ARCTAS) mission: Design, execution, and first results, Atmos. Chem. Phys., 10(11), 51915212, doi:10.5194/acp-10-5191-2010.
  • Junker C. and C. Liousse (2008), A global emission inventory of carbonaceous aerosol from historic records of fossil fuel and biofuel consumption for the period 1860-1997, Atmos. Chem. Phys., 8, 113.
  • Kalnay, E., et al. (1996), The NCEP/NCAR 40-year reanalysis project, Bull. Am. Meteorol. Soc., 77, 437471. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.
  • Kim, D., C. Wang, A. M. L. Ekman, M. C. Barth, and P. J. Rasch (2008), Distribution and direct radiative forcing of carbonaceous and sulfate aerosols in an interactive size-resolving aerosol-climate model, J. Geophys. Res., 113, D16309, doi:10.1029/2007JD009756.
  • Klonecki, A., P. Hess, L. Emmons, L. Smith, J. Orlando, and D. Blake (2003), Seasonal changes in the transport of pollutants into the Arctic troposphere-model study, J. Geophys. Res., 108(D4, 8367). doi: 10.1029/2002JD002199.
  • Koch, D., and J. Hansen (2005), Distant origins of Arctic black carbon: A Goddard Institute for Space Studies ModelE experiment, J. Geophys. Res., 110(D04204). doi: 10.1029/2004JD005296.
  • Koch, D., et al. (2009), Evaluation of black carbon estimations in global aerosol models, Atmos. Chem. and Phys., 9, 90019026. doi: 10.5194/acp-9-9001-2009.
  • Koch, D. (2001), Transport and direct radiative forcing of carbonaceous and sulfate aerosols in the GISS GCM, J. Geophys. Res., 106(D17), 20,31120,332, doi:10.1029/2001JD900038.
  • Koerner, Roy M.,, David A. Fisher, Kumiko Goto-Azuma (1999), 100 year record of ion chemistry from Agassiz Ice Cap Northern Ellesmere Island NWT, Canada, Atmos. Environ ,33, 347357.
  • Lamarque, J.-F., et al. (2010), Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application, Atmos. Chem. Phys., 10, 49635019, 2010 doi:10.5194/acpd-10-4963-2010.
  • Lavoué, D., T.L. Zhao, S.L. Gong, P. Huang, S. Sharma, and B.J. Stocks (2009), Interannual variability of carbonaceous particles from boreal wildland fires and their contributions to aerosol loading and deposition in the Arctic, American Geophysical Union (AGU) Fall Meeting, San Francisco, CA, December 14-18.
  • Lavoué, D. (2000), Transport vers la région arctique de l'aérosol carboné par les feux de biomasse des régions boréales et tempérées, Ph.D. thesis (in French), Laboratoire des Sciences du Climat et de l'Environnement, CNRS/CEA, Gif-sur-Yvette, France, p 270.
  • Lavoué, D., C. Liousse, H. Cachier, B.J. Stocks, and J. G. Goldhammer (2000), Modeling of carbonaceous particles emitted br Boreal and temperate wildfires at northern latitudes, J. Geophys. Res., 105, 26,87126,890.
  • Law, K., and A. Stohl (2007), Arctic air pollution: origins and impacts, Science, 315, 15371540. doi: 10.1126/science.1137695.
  • Liousse, C., J. E. Penner, C. Chuang, J. J. Walton, H. Eddleman and H. Cachier (1996), A global three-dimensional model study of carbonaceous aerosols, J. Geophys. Res., 101, 1941119432.
  • Liu, J.F., S. M. Fan, L.W. Horowitz and H. Levy (2011), Evaluation of factors controlling long range transport of black carbon to the Arctic, J. Geophys. Res., 116, D04307, doi:10.1029/2010jd015145.
  • Maksyutov, S., and G. Inoue (2000), Vertical profiles of radon and CO2 simulated by the global atmospheric transport model, in CGER supercomputer activity report CGER I039-2000, edited by CGER NIES, pp. 3941, Tsukuba, Japan.
  • Matsui, H., et al. (2011), Seasonal variation of the transport of black carbon aerosol from the Asian continent to the Arctic during the ARCTAS aircraft campaign, J. Geophys. Res., 116(D05202), doi:10.1029/2010JD015067.
  • Patra, P., M. Ishizawa, S. Maksyutov, T. Nakazawa, and G. Inoue (2005), Effects of biomass burning and meteorological conditions on land-atmosphere CO2 flux from atmospheric CO2 inverse modeling, Global Geochem. Cycles, 19(GB3005). doi: 10.1029/2004GB002259.
  • Peters, G.P., G. Marland, C. Le Quere, T. Boden, J. G. Canadell, M.R. Raupach (2012), Rapid growth in CO2 emissions after the 2008–2009 global financial crisis, Nature Climate Change, 2, 24.
  • Petroff A. and L. Zhang (2010), Development and validation of a size-resolved particle dry deposition scheme for applications in aerosol transport models, Geosci. Model Dev. Discuss. 3, 13171357.
  • Quinn, P. K., G. Shaw, E. Andrews, E. G. Dutton, T. Ruoho-Airola, and S. L. Gong (2007), Arctic haze: current trends and knowledge gaps, Tellus, 59B, 99114. doi: 10.1111/j.1600-0889.2006.00238.
  • Raatz W.E. (1991), The climatology and meteorology of Arctic air pollution, in: W.T. Sturges, Editor, Pollution of the Arctic atmosphere, 1342.
  • Rahn, K. A. (guest editor)(1981), Arctic air chemistry. Atmos. Environ. 1.5, 13451516.
  • Riemer, N., H. Vogel, and B. Vogel (2004), Soot aging time scales in polluted regions during day and night, Atmos. Chem. Phys., 4, 18851893, doi:10.5194/acp-4-1885-2004.
  • Sharma, S., E. Andrews, L. A. Barrie, J. A. Ogren, and D. Lavoué (2006), Variations and sources of the equivalent black carbon in the high Arctic revealed by long-term observations at Alert and Barrow: 1989-2003, J. Geophys. Res., 111(D14208). doi: 10.1029/2005JD006581.
  • Sharma, S., D. Lavoué, H. Cachier, L. A. Barrie, and S. L. Gong (2004), Long-term trends of the black carbon concentrations in the Canadian Arctic, J. Geophys. Res., 109(D15203). doi: 10.1029/2003JD004331.
  • S. Sharma, J. R. Brook, H. Cachier, J. Chow, A. Gaudenzi, and G. Lu (2002), Light absorption and thermal measurements of black carbon in different regions of Canada, J. Geophys. Res., 107, D24, 4771, doi:10.1029/2002JD002496.
  • Shindell, D. T., et al. (2008), A multi-model assessment of pollution transport to the Arctic, Atmos. Chem. and Phys.s, 8, 53535372. doi: 10.5194/acp-8-5353-2008.
  • Spackman, J. R., R. S. Gao, W. D. Neff, J. P. Schwarz, L. A. Watts, D. W. Fahey, J. S. Holloway, T. B. Ryerson, J. Peischl, and C. A. Brock (2010), Aircraft observations of enhancement and depletion of black carbon mass in the springtime Arctic, Atmos. Chem. Phys., 10, 96679680, doi:10.5194/acp-10-9667-2010
  • Stohl, A., et al. (2007), Arctic smoke - record high air pollution levels in the European Arctic due to agricultural fires in Eastern Europe, Atmos. Chem. Phys. 7, 511534.
  • Stohl, A., et al. (2006), Pan-Arctic enhancements of light absorbing aerosol concentrations due to North American boreal forest fire during summer 2004, J. Geophys. Res., 111(D22214). doi: 10.1029/2006JD007216.
  • Stone, R.S., et al. (2010), A Three-dimensional Characterization of Arctic Aerosols from Airborne Sun Photometer Observations: PAM-ARCMIP, April 2009, J. Geophys. Res., 115, D13203, doi:10.1029/2009JD013605.
  • Ström, J., J. Umegard, K. Torseth, P. Tunved, H. –C. Hansson, K. Holmen, V. Wismann, A. Herber and G. Konig-Langlo (2003), One year of particle size distribution and aerosol chemical composition measurements at the Zeppelin Station, Svalbard, Phys. Chem. Earth, 28, 11811190.
  • Textor, C., et al. (2006), Analysis and quantification of the diversities of aerosol life cycles within AeroCom, Atmos. Chem. and Phys.s, 6, 17771813. doi: 10.5194/acp-6-1777-2006.
  • Textor, C., et al. (2007), The effect of harmonized emissions on aerosol properties in global models-an AeroCom experiment, Atmos. Chem. and Phys.s, 7, 44894501. doi: 10.5194/acp-7-4489-2007.
  • United Nations (2007), The United Nations energy statistics database (2005), 5 pp, United Nations Statistics Division, New York.
  • UNEP 2011Integrated Assessment of Black Carbon and Tropospheric Ozone: Summary for Decision Makers, Nairobi, Kenya UNEP/GC/26/INF/20ISBN: 978-92-807-3142-2.
  • Van der Werf, G. R., J. T. Randerson, L. Giglio, G. J. Collatz, and P. S. Kasibhatla (2006), Interannual variability in global biomass burning emission from 1997 to 2004, Atmos. Chem. Phys., 6, 34233441. SRef-ID: 1680-7324/acp/2006-6-3423.
  • Van der Werf et al. (2010), Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009), Atmos. Chem. Phys., 10.
  • Vignati, E., M. Karl, M. Krol, J. Wilson, P. Stier, and F. Cavalli (2010), Sources of uncertainties in modelling black carbon at the global scale, Atmos. Chem. Phys., 10, 25952611, doi:10.5194/acp-10-2595-2010.
  • Wang, C. (2004), A modeling study on the climate impacts of black carbon aerosols, J. Geophys. Res., 109, D03106. doi:10.1029/2003JD004084.
  • Wang, Z. L., H. Zhang, and X. S. Shen (2011), Radiative Forcing and Climate Response Due to Black Carbon in Snow and Ice, Adv. Atmos. Sci., 28 (6), 13361344, doi: 10.1007/s00376-011-0117-5,
  • Warneke C., et al. (2009), Biomass burning in Siberia and Kazakhstan as an important source for haze over the Alaskan Arctic in April 2008, Geophys. Res. Lett., 36, pp. L02813, doi: 10.1029/2008gl036194.
  • Warren S. and W. Wiscombe (1985), Dirty snow after nuclear war, Nature 313, 467470. doi: 10.1038/313467a0.
  • Worthy, D. E. J., E. Chan, M. Ishizawa, D. Chan, C. Poss, E. J. Dlugokencky, S. Maksyutov, and I. Levin (2009), A decrease in anthropogenic methane emissions in Europe and Siberia inferred from continuous carbon dioxide and methane observations at Alert, Canada, J. Geophys. Res., 114(D10301). doi: 10.1029/2008JD011239.