Speciation and trends of organic nitrogen in southeastern U.S. fine particulate matter (PM2.5)


  • All Supporting Information may be found in the online version of this article.

Corresponding author: S. Samy and M. D. Hays, National Risk Management Research Laboratory (NRMRL), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA. (shar.samy@gmail.com; hays.michael@epa.gov)


[1] The impacts of meteorology and air quality on the concentrations and relative distributions of free and combined amino acids (FAA; CAA) are evaluated during a month-long sampling campaign at a semiurban site in the southeastern U.S. The average FAA concentration in fine aerosols (PM2.5) was 11 ± 6 ng m–3, while CAA was found to be several times higher at 46 ± 21 ng m–3. Glycine and alanine were the most abundant amino acids, accounting for 48% of FAA and 58% of the CAA, while distinct differences were observed in compound distributions; glutamic acid, aspartic acid, serine, and threonine accounted for a further 29% of FAA and 30% of the total CAA. An intense rainfall event during the campaign demonstrated the significant impact of meteorological and air quality conditions on FAA-CAA concentrations and distributions. Correlative trends with atmospheric oxidant (ozone) and inorganic nitrogen levels suggest an important role for atmospheric processing. The liquid chromatography-mass spectrometry (quadrupole time-of-flight) technique used in this study allowed for detection of coextracted water-soluble organic compounds and characterization of a larger fraction of the organic nitrogen mass. N-heterocyclic compounds were detected in samples from this campaign, indicating a likely biomass burning source contribution for organic nitrogen.