SEARCH

SEARCH BY CITATION

References

  • Agresti, A. (2002), Categorical Data Analysis, 2nd ed., John Wiley, Hoboken, N. J.
  • Braun, J. V., R. K. Braun, and H.-G. Muller (2000), Multiple changepoint fitting via quasilikelihood, with application to DNA sequence segmentation, Biometrika, 87, 301314.
  • Carlin, B. P., A. E. Gelfand, and A. F. M. Smith (1992), Hierarchical Bayesian analysis of changepoint problems, Appl. Stat., 41, 389405.
  • Efron, B. (1979), Bootstrap methods: Another look at the jackknife, Ann. Stat., 7, 126.
  • Efron, B., and R. J. Tibshirani (1993), An Introduction to the Bootstrap, Chapman and Hall, New York.
  • Fahrmeir, L., and G. Tutz (2001), Multivariate Statistical Modelling Based on Generalized Linear Models, 2nd ed., Springer, New York.
  • Freedman, D. A. (1981), Bootstrapping regression models, Ann. Stat., 9, 12181228.
  • Fu, Y.-X., and R. N. Curnow (1990), Locating a changed segment in a sequence of Bernoulli variables, Biometrika, 77, 295304.
  • Galligan, A. M. (1953), Variability of Subjective Cloud Observations I, Air Force Surv. Geophys., vol. 33, Air Res. Dev. Command, Baltimore, Md.
  • Girón, J. B., J. Ginebra, and A. Riba (2005), Bayesian analysis of a multinomial sequence and homogeneity of literary style, Am. Stat., 59, 1930.
  • Groisman, P. Y., R. W. Knight, T. R. Karl, D. R. Easterling, B. Sun, and J. H. Lawrimore (2004), Contemporary changes of the hydrological cycle over the contiguous United States: Trends derived from in situ observations, J. Hydrometeorol., 5, 6485.
  • Hinkley, D. V., and E. A. Hinkley (1970), Inference about the change-point in a sequence of binomial variables, Biometrika, 57, 477488.
  • Hinkley, D. V., and E. Schechtman (1987), Conditional bootstrap methods in the mean-shift model, Biometrika, 74, 8593.
  • Karl, T. R., and P. M. Steurer (1990), Increased cloudiness in the United States during the first half of the twentieth century: Fact or fiction?, Geophys. Res. Lett., 17, 19251928.
  • McCullagh, P. (1980), Regression models for ordinal data, J. R. Stat. Soc., Ser. B, 42, 109142.
  • McCullagh, P., and J. A. Nelder (1989), Generalized Linear Models, 2nd ed., Chapman and Hall, London.
  • Milewska, E. J. (2004), Baseline cloudiness trends in Canada 1953–2002, Atmos. Ocean, 42, 267280.
  • Osius, G., and D. Rojek (1992), Normal goodness-of-fit tests for multinomial models with large degrees of freedom, J. Am. Stat. Assoc., 87, 11451152.
  • Pettit, A. N. (1980), A simple cumulative sum type statistic for the change-point problem with zero-one observations, Biometrika, 67, 7984.
  • Qian, S. Q., Y. Pan, and R. S. King (2004), Soil total phosphorus threshold in the Everglades: A Bayesian changepoint analysis for multinomial response data, Ecol. Indic., 4, 2937.
  • Robbins, M. W., R. B. Lund, C. M. Gallagher, and Q. Lu (2011), Changepoints in the North Atlantic tropical cyclone record, J. Am. Stat. Assoc., 106, 8999.
  • Smith, A. F. M. (1975), A Bayesian approach to inference about a change-point in a sequence of random variables, Biometrika, 62, 407416.
  • Trenberth, K. E., et al. (2007), Observations: Surface and atmospheric climate change, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., pp. 235336, Cambridge Univ. Press, New York.
  • Wolfe, D. A., and Y.-S. Chen (1990), The changepoint problem in a multinomial sequence, Commun. Stat. Simul. Comput., 19, 603618.
  • Yee, T. W. (2010), The VGAM Package for Categorical Data Analysis, J. Stat. Software, 32, 134.