SEARCH

SEARCH BY CITATION

References

  • Anderson, T. W. (1962), On the distribution of the two-sample Cramer-von Mises criterion, Ann. Math. Stat., 33, 11481159.
  • Beekmann, M., and C. Derognat (2003), Monte Carlo uncertainty analysis of a regional-scale transport chemistry model constrained by measurements from the atmospheric pollution over the Paris area (ESQUIF) campaign, J. Geophys. Res., 108(8559), D17.
  • Bergin, M. S., and J. B. Milford (2000), Application of Bayesian Monte Carlo analysis to a Lagrangian photochemical air quality model, Atmos. Environ., 34(5), 781792.
  • Bergin, M. S., G. S. Noblet, K. Petrini, et al. (1999), Formal uncertainty analysis of a Lagrangian photochemical air pollution model, Environ. Sci. Technol., 33, 11161126.
  • Bey, I., D. J. Jacob, R. M. Yantosca, J. A. Logan, B. D. Field, A. M. Fiore, Q. B. Li, H. G. Y. Liu, L. J. Mickley, M. G. Schultz (2001), Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res., 106(D19), 23,07323,095, doi:10.1029/2001JD000807.
  • Carlton, A. G., and K. R. Baker (2011), Photochemical modeling of the Ozark Isoprene Volcano: MEGAN, BEIS, and their impacts on air quality predictions, Environ. Sci. Technol., 45(10), 44384445.
  • Cohan, D. S., A. Hakami, Y. Hu, and A. G. Russell (2005), Nonlinear response of ozone to emissions: Source apportionment and sensitivity analysis, Environ. Sci. Technol., 39(17), 67396748.
  • Deguillaume, L., M. Beekmann, and L. Menut (2007), Bayesian Monte Carlo analysis applied to regional-scale inverse emission modeling for reactive trace gases, J. Geophys. Res., 112, D02307.
  • Deguillaume, L., M. Beekmann, and C. Derognat (2008), Uncertainty evaluation of ozone production and its sensitivity to emission changes over the Ile-de-France region during summer periods, J. Geophys. Res., 113, D02304.
  • Demerjian, K. L. (2000), A review of national monitoring networks in North America, Atmos. Environ., 34(12–14), 18611884, doi:10.1016/S1352-2310(99)00452-5.
  • Dennis, R., et al. (2010), A framework for evaluating regional-scale numerical photochemical modeling systems, Environ. Fluid Mech., 10(4), 471489.
  • Digar, A. (2012), Uncertainty in regional air quality modeling, Ph.D. thesis, Civil and Environmental Engineering, Rice University, Houston, Tex.
  • Digar, A., and D. S. Cohan (2010), Efficient characterization of pollutant-emission response under parametric uncertainty, Environ. Sci. Technol., 44(17), 67246730.
  • Digar, A., D. S. Cohan, D. D. Cox, B. Kim, and J. W. Boylan (2011), Likelihood of achieving air quality targets under model uncertainties, Environ. Sci. Technol., 45(1), 189196.
  • Dudhia, J. (1993), A nonhydrostatic version of the Penn State–NCAR mesoscale model: Validation tests and simulation of an Atlantic cyclone and cold front, Mon. Weather Rev., 121(5), 14931513.
  • Dunker, A. M. (1984), The decoupled direct method for calculating sensitivity coefficients in chemical kinetics, J. Chem. Phys., 81(5), 23852393.
  • Dunlea, E. J., et al. (2007), Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment, Atmos. Chem. Phys., 7(10), 26912704.
  • ENVIRON (2007), User's Guide to Emissions Processor, Version 3. ENVIRON International Corporation., Novato, Calif.
  • ENVIRON (2008), Boundary conditions and fire emissions modeling, final report to the Texas Commission on Environmental Quality (TCEQ). ENVIRON International Corporation., Novato, Calif.
  • ENVIRON (2009), Updated boundary conditions. Final report prepared for Texas Commission on Environmental Quality, Unpublished report available at http://www.tceq.texas.gov/assets/public/implementation/air/am/contracts/reports/pm/5820784005FY0916-20090730-environ-updated_bc.pdf.
  • ENVIRON (2010), User's guide—comprehensive air-quality model with extensions, Version 5.30., ENVIRON International Corporation, Novato, Calif.
  • Fine, J., L. Vuilleumier, S. Reynolds, P. Roth, and N. Brown (2003), Evaluating uncertainties in regional photochemical air quality modeling, Annu. Rev. Environ. Resour., 28, 59106.
  • Gilliland, A. B., C. Hogrefe, R. W. Pinder, J. M. Godowitch, K. L. Foley, and S. T. Rao (2008), Dynamic evaluation of regional air quality models: Assessing changes in O-3 stemming from changes in emissions and meteorology, Atmos Environ, 42(20), 51105123.
  • Guenther, A., T. Carl, P. Harley, C. Wiedinmyer, P. I. Palmer, and C. Geron (2006), Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6(11), 31813210.
  • Hanna, S. R., Z. G. Lu, H. C. Frey, N. Wheeler, J. Vukovich, S. Arunachalam, M. Fernau, and D. A. Hansen (2001), Uncertainties in predicted ozone concentrations due to input uncertainties for the UAM-V photochemical grid model applied to the July 1995 OTAG domain, Atmos. Environ., 35(5), 891903, doi:10.1016/S1352-2310(00).00367-8.
  • Hakami, A., M. T. Odman, and A. G. Russell (2003), High-order, direct sensitivity analysis of multidimensional air quality models, Environ. Sci. Technol., 37(11), 24422452.
  • Henderson, B. H., et al. (2012), Combining Bayesian methods and aircraft observations to constrain the HO + NO2 reaction rate, Atmos. Chem. Phys., 12, 653667. doi:10.5194/acp-12-653-2012.
  • Hogrefe, C., and S. T. Rao (2001), Demonstrating attainment of the air quality standards: Integration of observations and model predictions into the probabilistic framework, J Air Waste Manage. Assoc. 51(7), 10601072.
  • Holland, D. M., and T. Fitz-Simons (1982), Fitting statistical distributions to air quality data by the maximum likelihood method, Atmos. Environ., 16(5), 10711076.
  • Lamsal, L. N., et al. (2008), Ground-level nitrogen dioxide concentrations inferred from the satellite-borne Ozone Monitoring Instrument, J. Geophys. Res., 113(D16), D16308.
  • Mallet, V. and B. Sportisse (2006), Ensemble-based air quality forecasts: A multimodal approach applied to ozone, J. Geophys. Res., 111, D18302.
  • Mollner, A. K., et al. (2010), Rate of gas phase association of hydroxyl radical and nitrogen dioxide, Science, 330(6004), 646649.
  • Pierce, T., C. Hogrefe, S. T. Rao, P. S. Porter, and J. Ku (2010), Dynamic evaluation of a regional air quality model: Assessing the emissions-induced weekly ozone cycle, Atmos. Environ., 44(29), 35833596.
  • Pinder, R. W., R. C. Gilliam, K. W. Appel, S. L. Napelenok, K. M. Foley, and A. B. Gilliland (2009), Efficient probabilistic estimates of surface ozone concentration using an ensemble of model configurations and direct sensitivity calculations, Environ. Sci. Technol., 43(7), 23882393.
  • Raftery, A. E., T. Gneiting, F. Balabdaoui, and M. Polakowski (2005), Using Bayesian model averaging to calibrate forecast ensembles, Mon. Weather Rev., 133, 11551174.
  • Russell, A. G., and R. Dennis (2000), NARSTO critical review of photochemical models and modeling. Atmos. Environ., 34(12–14), 22832324.
  • Sander, S. P., et al. (2006), Chemical kinetics and photochemical data for use in atmospheric studies, Evaluation Number 15, NASA Jet Propulsion Laboratory, available at http://jpldataeval.jpl.nasa.gov/pdf/JPL_15._AllInOne.pdf, NASA JPL.
  • Slinn, S. A., and W. G. N. Slinn (1980), Predictions for particle deposition on natural waters, Atmos. Environ., 14(9), 10131016.
  • Taylor, J. A., R. W. Simpson, and A. J. Jakeman (1987), Statistical modeling of restricted pollutant data sets to assess compliance with air quality criteria, Environ. Monit. Assess., 9(1), 2946.
  • Texas Commission on Environmental Quality (2011a), Dallas-Fort Worth attainment demonstration SIP revision for the 1997 eight-hour ozone standard nonattainment area. Prepared for Texas Commission on Environmental Quality as part of the revisions to the State of Texas air quality implementation plan for the control of ozone air pollution in Dallas-Fort Worth eight-hour ozone nonattainment area, Unpublished government document available at http://www.tceq.texas.gov/airquality/sip/dfw_revisions.html.
  • Texas Commission on Environmental Quality (2011b), Dallas-Fort Worth reasonable further progress state implementation plan revision for the 1997 eight-hour Ozone standard. Prepared for Texas Commission on Environmental Quality as part of the revisions to the State of Texas air quality implementation plan for the control of ozone air pollution in Dallas-Fort Worth 1997 eight-hour ozone nonattainment area, Unpublished government document available at http://www.tceq.texas.gov/airquality/sip/dfw_revisions.html.
  • Tian, D., M. S. Bergin, D. S. Cohan, S. L. Napelenok, Y. Hu, M. E. Chang, and A. G. Russell (2010). Uncertainty analysis of ozone formation and response to emission controls using higher-order sensitivities. J. Air Waste Manage. Assoc., 60, 797804.
  • U.S. Environmental Protection Agency (1999), Draft report on the use of models and other analyses in attainment demonstrations for the 8-hr Ozone NAAQS, U.S. Environmental Protection Agency, Research Triangle Park, N.C.
  • U.S. Environmental Protection Agency (2006), Air Quality Criteria for Ozone and Related Photochemical Oxidants, Government report available at http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=149923.
  • U.S. Environmental Protection Agency (2007), Guidance on the use of models and other analyses for demonstrating attainment of air quality goals for Ozone, PM2.5, and Regional Haze, Government report available at http://www.epa.gov/scram001/guidance/guide/final-03-pm-rh-guidance.pdf.
  • Wesely, M. L. (1989), Paramaterization of surface resistances to gaseous dry deposition in regional-scale numerical models, Atmos. Environ., 23(6), 12931304.
  • Yang, Q., et al. (2010), A study of tropospheric ozone column enhancements over North America using satellite data and global chemical transport model, J. Geophys. Res., 115, D08302, doi:10.1029/2009JD012616.
  • Yarwood, G., G. Wilson, C. Emery, and A. Guenther (1999), Development of the GloBEIS—a state of the science biogenic emissions modeling system. Final report to the Texas Natural Resource Conservation Commission, Austin, Tex., Report available at http://www.camx.com/publ/pdfs/cb05_final_report_120805.aspx.
  • Yarwood, G., T. E. Stoeckenius, J. G. Heiken, A. M. Dunker (2003), Modeling weekday/weekend ozone differences in the Los Angeles region for 1997, J. Air Waste Manage. Assoc., 53(7), 864875.
  • Yarwood, G., S. Rao, M. Yocke, G. Z. Whitten, and S. Reyes (2005), Updates to the Carbon Bond chemical mechanism: CB05. Final report to the U.S. Environmental Protection Agency, Report available at http://www.camx.com/publ/pdfs/cb05_final_report_120805.aspx.
  • Yarwood, G., G. Z. Whitten, and J. Jung (2010), Development, evaluation and testing of Version 6 of the Carbon Bond chemical mechanism (CB6), Final report prepared for Texas Commission on Environmental Quality, Unpublished final report from ENVIRON to TCEQ under Work Order No. 582-7-84005-FY10-26.
  • Zhang, L., J. R. Brook, and R. Vet (2003), A revised parameterization for gaseous dry deposition in air-quality models, Atmos. Chem. Phys., 3, 20672082.
  • Zhang, L. M., S. Gong, J. Padro, and L. Barrie (2001), A size-segregated particle dry deposition scheme for an atmospheric aerosol module, Atmos. Environ, 35(3), 549560.