SEARCH

SEARCH BY CITATION

References

  • Brunner, D., et al. (2003), An evaluation of the performance of chemistry transport models by comparison with research aircraft observations. Part 1: Concepts and overall model performance, Atmos. Chem. Phys., 3, 16091631.
  • Brunner, D., et al. (2005), An evaluation of the performance of chemistry transport models. Part 2: Detailed comparison with two selected campaigns, Atmos. Chem. Phys., 5(1), 107129.
  • Burkhardt, U., and B. Kärcher (2009), Process-based simulation of contrail cirrus in a global climate model, J. Geophys. Res., 114, D16201, doi:10.1029/2008JD011491.
  • Burkhardt, U., and B. Kärcher (2011), Global radiative forcing from contrail cirrus, Nat. Clim. Change, 1(1), 5458.
  • Dahlmann, K. (2012), Eine Methode zur effizienten Bewertung von Maßnahmen zur Klimaoptimierung des Luftverkehrs, PhD thesis, Fak. für Phys., Ludwig-Maximilians-Univ. München, Munich, Germany.
  • Egelhofer, R., C. Marizy, and C. Bickerstaff (2008), On how to consider climate change in aircraft design, Meteorol. Z., 17(2), 173179.
  • Fichter, C. (2009), Climate impact of air traffic emissions in dependency of the emission location and altitude, PhD thesis, Fac. of Sci. and Eng., Manchester Metrop. Univ., Manchester, UK.
  • Fichter, C., S. Marquart, R. Sausen, and D. Lee (2005), The impact of cruise altitude on contrails and related radiative forcing, Meteorol. Z., 14(4), 563572.
  • Forster, P., M. Ponater, and W. Zhong (2001), Testing broadband radiation schemes for their ability to calculate the radiative forcing and temperature response to stratospheric water vapour and ozone changes, Meteorol. Z., 10(5), 387393.
  • Fouquart, Y., and B. Bonnel (1980), Computations of solar heating of the Earth's atmosphere—A new parameterization, Beitr. Phys. Atmos., 53, 3562.
  • Frömming, C., M. Ponater, U. Burkhardt, A. Stenke, S. Pechtl, and R. Sausen (2011), Sensitivity of contrail coverage and contrail radiative forcing to selected key parameters, Atmos. Environ., 45, 14831490.
  • Fuglestvedt, J., T. Berntsen, I. Isaksen, H. Mao, X. Liang, and W. Wang (1999), Climatic forcing of nitrogen oxides through changes in tropospheric ozone and methane: Global 3D model studies, Atmos. Environ., 33(6), 961977.
  • Gardner, R., et al. (1997), The ANCAT/EC global inventory of NOx emissions from aircraft, Atmos. Environ., 31(12), 17511766.
  • Gauss, M., I. S. A. Isaksen, S. Wong, and W.-C. Wang (2003), Impact of H2O emissions from cryoplanes and kerosene aircraft on the atmosphere, J. Geophys. Res., 108(10), 4304, doi:10.1029/2002JD002623.
  • Gauss, M., I. Isaksen, D. Lee, and O. Søvde (2006), Impact of aircraft NOx emissions on the atmosphere—Tradeoffs to reduce the impact, Atmos. Chem. Phys., 6, 15291548.
  • Grewe, V., and A. Stenke (2008), Airclim: An efficient tool for climate evaluation of aircraft technology, Atmos. Chem. Phys., 8, 46214639.
  • Grewe, V., M. Dameris, R. Hein, I. Köhler, and R. Sausen (1999), Impact of future subsonic aircraft NOx emissions on the atmospheric composition, Geophys. Res. Lett., 26(1), 4750.
  • Grewe, V., D. Brunner, M. Dameris, J. Grenfell, R. Hein, D. Shindell, and J. Staehelin (2001), Origin and variability of upper tropospheric nitrogen oxides and ozone at northern mid-latitudes, Atmos. Environ., 35(20), 34213433.
  • Grewe, V., M. Dameris, C. Fichter, and R. Sausen (2002a), Impact of aircraft NOxemissions. Part 1: Interactively coupled climate-chemistry simulations and sensitivities to climate-chemistry feedback, lightning and model resolution, Meteorol. Z., 11(3), 177186.
  • Grewe, V., M. Dameris, C. Fichter, and D. Lee (2002b), Impact of aircraft NOx emissions. Part 2: Effects of lowering the flight altitude, Meteorol. Z., 11(3), 197205.
  • Hansen, J., et al. (2005), Efficacy of climate forcings, J. Geophys. Res., 110, D18104, doi:10.1029/2005JD005776.
  • Hasselmann, K., R. Sausen, E. Maier-Reimer, and R. Voss (1993), On the cold start problem in transient simulations with coupled atmosphere-ocean models, Clim. Dyn., 9, 5361.
  • Hasselmann, K., S. Hasselmann, R. Giering, V. Ocana, and H. Storch (1997), Sensitivity study of optimal CO2 emission paths using a simplified Structural Integrated Assessment Model (SIAM), Clim. Change, 37(2), 345386.
  • Hein, R., et al. (2001), Results of an interactively coupled atmospheric chemistry-general circulation model: Comparison with observations, Ann. Geophys., 19(4), 435457.
  • Hendricks, J., B. Kärcher, and U. Lohmann (2009), Effects of ice nuclei on cirrus clouds in a global climate model, J. Geophys. Res., 116, D18206, doi:10.1029/2010JD015302.
  • Holmes, C., Q. Tang, and M. Prather (2011), Uncertainties in climate assessment for the case of aviation NO, Proc. Natl. Acad. Sci. U. S. A., 108(27), 10,99711,002.
  • Hoor, P., et al. (2009), The impact of traffic emissions on atmospheric ozone and OH: Results from QUANTIFY, Atmos. Chem. Phys., 9, 31133136.
  • Intergovernmental Panel on Climate Change (2001), Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by J. T. Houghton et al., Cambridge Univ. Press, Cambridge, U. K.
  • International Energy Agency (2007), Oil Information 2006, 749 pp., IEA, Paris.
  • Jacobson, M., J. Wilkerson, A. Naiman, and S. Lele (2011), The effects of aircraft on climate and pollution. Part I: Numerical methods for treating the subgrid evolution of discrete size-and composition-resolved contrails from all commercial flights worldwide, J. Comput. Phys., 230, 51155132.
  • Kentarchos, A., and G. Roelofs (2002), Impact of aircraft NOxemissions on tropospheric ozone calculated with a chemistry-general circulation model: Sensitivity to higher hydrocarbon chemistry, J. Geophys. Res., 107(D13), 4175, doi:10.1029/2001JD000828.
  • Kingdon, R. (2000), FAST v1.0 User Manual, Propul. Dep., DERA Pyestock, Farnborough, U. K.
  • Koch, A., B. Lührs, K. Dahlmann, F. Linke, V. Grewe, M. Litz, M. Plohr, B. Nagel, V. Gollnick, and U. Schumann (2011), Climate impact assessment of varying cruise flight altitudes applying the CATS simulation approach, paper presented at Third International Conference of the European Aerospace Societies, Venice, Italy.
  • Köhler, M., G. Rädel, O. Dessens, K. Shine, H. Rogers, O. Wild, and J. Pyle (2008), Impact of perturbations to nitrogen oxide emissions from global aviation, J. Geophys. Res., 113, D11305, doi:10.1029/2007JD009140.
  • Lee, D., D. Fahey, P. Forster, P. Newton, R. Wit, L. Lim, B. Owen, and R. Sausen (2009), Aviation and global climate change in the 21st century, Atmos. Environ., 43, 35203537.
  • Lee, D., et al. (2010), Transport impacts on atmosphere and climate: Aviation, Atmos. Environ., 44(37), 46784734.
  • Liu, X., J. Penner, and M. Wang (2009), Influence of anthropogenic sulfate and black carbon on upper tropospheric clouds in the NCAR CAM3 model coupled to the IMPACT global aerosol model, J. Geophys. Res., 114, D03204, doi:10.1029/2008JD010492.
  • Mannstein, H., P. Spichtinger, and K. Gierens (2005), A note on how to avoid contrail cirrus, Transport. Res., 10(5), 421426.
  • Marquart, S., and B. Mayer (2002), Towards a reliable GCM estimation of contrail radiative forcing, Geophys. Res. Lett., 29(8), 1179, doi:10.1029/2001GL014075.
  • Marquart, S., R. Sausen, M. Ponater, and V. Grewe (2001), Estimate of the climate impact of cryoplanes, Aerosp. Sci. Technol., 5(1), 7384.
  • Marquart, S., M. Ponater, F. Mager, and R. Sausen (2003), Future development of contrail cover, optical depth and radiative forcing: Impacts of increasing air traffic and climate change, J. Clim., 16(17), 28902904.
  • Minnis, P., D. Young, D. Garber, L. Nguyen, W. Smith Jr., and R. Palikonda (1998), Transformation of contrails into cirrus during success, Geophys. Res. Lett., 25(8), 11571160.
  • Morcrette, J. (1991), Radiation and cloud radiative properties in the European Centre for Medium Range Weather Forecasts forecasting system, J. Geophys. Res., 96(D5), 91219132.
  • Myhre, G., et al. (2011), Radiative forcing due to changes in ozone and methane caused by the transport sector, Atmos. Environ., 45(2), 387394.
  • Noppel, F., and R. Singh (2007), Overview on contrail and cirrus cloud avoidance technology, J. Aircraft, 44(5), 17211726.
  • Olivié, D., et al. (2012), Modeling the climate impact of road transport, maritime shipping and aviation over the period 1860–2100 with and OAGCM, Atmos. Chem. Phys., 12, 14491480.
  • Penner, J., et al. (1999), Aviation and the Global Atmosphere: A Special Report of IPCC Working Groups I and III in Collaboration With the Scientific Assessment Panel to the Montreal Protocol on Substances that Deplete the Ozone Layer, 373 pp., Cambridge Univ. Press, Cambridge, U. K.
  • Ponater, M., S. Marquart, and R. Sausen (2002), Contrails in a comprehensive global climate model: Parameterization and radiative forcing results, J. Geophys. Res., 107(13), 4164, doi:10.1029/2001JD000429.
  • Ponater, M., V. Grewe, R. Sausen, U. Schumann, S. Pechtl, E. Highwood, and N. Stuber (2006), Climate sensitivity of radiative impacts from transport systems, in Proceedings of an International Conference on Transport, Atmosphere and Climate (TAC), edited by R. Sausen et al., pp. 190196, Eur. Comm., Luxembourg.
  • Rädel, G., and K. Shine (2008), Radiative forcing by persistent contrails and its dependence on cruise altitudes, J. Geophys. Res., 113, D07105, doi:10.1029/2007JD009117.
  • Rap, A., P. Forster, J. Haywood, A. Jones, and O. Boucher (2010a), Estimating the climate impact of linear contrails using the UK Met Office climate model, Geophys. Res. Lett., 37, L20703, doi:10.1029/2010GL045161.
  • Rap, A., P. Forster, A. Jones, O. Boucher, J. Haywood, N. Bellouin, and R. De Leon (2010b), Parameterization of contrails in the UK Met Office Climate Model, J. Geophys. Res., 115, D10205, doi:10.1029/2009JD012443.
  • Reithmeier, C., and R. Sausen (2002), ATTILA: Atmospheric tracer transport in a Lagrangian model, Tellus, Ser. B, 54(3), 278299.
  • Roeckner, E., K. Arpe, L. Bengtsson, M. Christoph, M. Claussen, L. Dümenil, M. Esch, M. Giorgetta, U. Schlese, and U. Schulzweida (1996), The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate, Rep. 218, Max-Planck-Inst. für Meteorol., Hamburg, Germany.
  • Sausen, R., and U. Schumann (2000), Estimates of the climate response to aircraft CO2 and NOx emissions scenarios, Clim. Change, 44(1), 2758.
  • Sausen, R., K. Gierens, M. Ponater, and U. Schumann (1998), A diagnostic study of the global distribution of contrails. Part I: Present day climate, Theor. Appl. Climatol., 61(3), 127141.
  • Sausen, R., et al. (2005), Aviation radiative forcing in 2000: An update on IPCC (1999), Meteorol. Z., 14, 555561.
  • Schumann, U. (1996), On conditions for contrail formation from aircraft exhausts, Meteorol. Z., 5, 423.
  • Schumann, U. (2012), A contrail cirrus prediction model, Geosci. Model Dev., 5, 543580.
  • Schumann, U., K. Graf, and H. Mannstein (2011), Potential to reduce the climate impact of aviation by flight level changes, paper presented at 3rd AIAA Atmospheric Space Environments Conference, Am. Inst. of Aeronaut. and Astronaut., New York.
  • Schwartz Dallara, E., I. Kroo, and I. Waitz (2011), Metric for comparing lifetime average climate impact of aircraft, AIAA J., 49(8), 16001613.
  • Steil, B., M. Dameris, C. Brühl, P. Crutzen, V. Grewe, M. Ponater, and R. Sausen (1998), Development of a chemistry module for GCMs: First results of a multiannual integration, Ann. Geophys., 16(2), 205228.
  • Stenke, A., V. Grewe, and M. Ponater (2008), Lagrangian transport of water vapor and cloud water in the ECHAM4 GCM and its impact on the cold bias, Clim. Dyn., 31(5), 491506.
  • Stenke, A., M. Dameris, V. Grewe, and H. Garny (2009), Implications of Lagrangian transport for simulations with a coupled chemistry-climate model, Atmos. Chem. Phys., 9, 54895504.
  • Stevenson, D., R. Doherty, M. Sanderson, W. Collins, C. Johnson, and R. Derwent (2004), Radiative forcing from aircraft NOx emissions: Mechanisms and seasonal dependence, J. Geophys. Res., 109, D17307, doi:10.1029/2004JD004759.
  • Stordal, F., et al. (2006), TRADEOFFs in climate effects through aircraft routing: Forcing due to radiatively active gases, Atmos. Chem. Phys. Discuss., 6, 10,73310,771.
  • Stuber, N., and P. Forster (2007), The impact of diurnal variations of air traffic on contrail radiative forcing, Atmos. Chem. Phys., 7, 31533162.
  • Stuber, N., R. Sausen, and M. Ponater (2001), Stratosphere adjusted radiative forcing calculations in a comprehensive climate model, Theor. Appl. Climatol., 68(3), 125135.
  • Unger, N. (2011), Global climate impact of civil aviation for standard and desulfurized jet fuel, Geophys. Res. Lett., 38, L20803, doi:10.1029/2011GL049289.
  • Wild, O., M. Prather, and H. Akimoto (2001), Indirect long-term global radiative cooling from NOx emissions, Geophys. Res. Lett., 28(9), 17191722.
  • Wilkerson, J., M. Jacobson, A. Malwitz, S. Balasubramanian, R. Wayson, G. Fleming, A. Naiman, and S. Lele (2010), Analysis of emission data from global commercial aviation: 2004 and 2006, Atmos. Chem. Phys., 10, 63916408.
  • Williams, V., R. Noland, and R. Toumi (2002), Reducing the climate change impacts of aviation by restricting cruise altitudes, Transport. Res., 7(6), 451464.
  • Williamson, D., and P. Rasch (1994), Water vapor transport in the NCAR CCM2, Tellus, Ser. A, 46(1), 3451.