SEARCH

SEARCH BY CITATION

References

  • Alexander, D., P. Crozier, and J. Anderson (2008), Brown carbon spheres in East Asian outflow and their optical properties, Science, 321, 833836.
  • Anderson, T. L., Y. Wu, D. A. Chu, B. Schmid, J. Redemann, and O. Dubovik (2005), Testing the MODIS satellite retrieval of aerosol fine-mode fraction, J. Geophys. Res., 110, D18204, doi:10.1029/2005JD005978.
  • Bellouin, N., O. Boucher, D. Tanre, and O. Dubovik (2003), Aerosol absorption over the clear-sky oceans deduced from POLDER-1 and AERONET observations, Geophys. Res. Lett., 30(14), 1748, doi:10.1029/2003GL017121.
  • Bellouin, N., O. Boucher, J. Haywood, and M. S. Reddy (2005), Global estimate of aerosol direct radiative forcing from satellite measurements, Nature, 438(22), 11381141.
  • Bellouin, N., A. Jones, J. Haywood, and S. A. Christopher (2008), Updated estimate of aerosol direct radiative forcing from satellite observations and comparison against the Hadley centre climate model, J. Geophys. Res., 113(D10205), doi:10.1029/2007JD009385.
  • Cattrall, C., K. L. Carder, and H. R. Gordon (2003), Columnar aerosol single-scattering albedo and phase function retrieved from sky radiance over the ocean: Measurements of Saharan dust, J. Geophys. Res., 108(D9, 4287), doi:10.1029/2002JD002497.
  • Chakrabarty, R., H. Moosmüller, L.-W. Chen, K. Lewis, W. Arnott, C. Mazzoleni, M. Dubey, C. Wold, W. Hao, and S. Kreidenweis (2010), Brown carbon in tar balls from smoldering biomass combustion, Atmos. Chem. Phys., 10, 63636370, doi:10.5194/acp-10-6363-2010.
  • Chand, D., R. Wood, T. L. Anderson, S. K. Satheesh, and R. J. Charlson (2009), Satellite-derived direct radiative effect of aerosols dependent on cloud cover, Nature Geosci., 2, 181184.
  • Charlock, T., and W. Sellers (1980), Aerosol effects on climate: Calculations with time-dependent and steady-state radiative-convective models, J. Atmos. Sci., 37, 13271341.
  • Charlson, R., S. Schwartz, J. Hales, R. Cess, J. Coakley, J. Hansen, and D. Hofman (1992), Climate forcing by anthropogenic aerosols, Science, 255, 423430.
  • Chin, M., P. Ginoux, S. Kinne, O. Torres, B. Holben, B. Duncan, R. Martin, J. Logan, A. Higurashi, and T. Nakajima (2002), Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sunphotometer measurements, J. Atmos. Sci., 59, 461483.
  • Chin, M., D. A. Chu, R. Levy, L. A. Remer, Y. J. Kaufman, B. N. Holben, T. Eck, and P. Ginoux (2004), Aerosol distribution in the Northern Hemisphere during ACE-Asia: Results from global model, satellite observations, and sunphotometer measurements, J. Geophys. Res., 109(D23S90), doi:10.1029/2004JD004829.
  • Chin, M., T. Diehl, P. Ginoux, and W. Malm (2007), Intercontinental transport of pollution and dust aerosols: Implications for regional air quality, Atmos. Chem. Phys., 7, 55015517.
  • Chin, M., T. Diehl, O. Dubovik, T. Eck, B. Holben, A. Sinyuk, and D. Streets (2009), Light absorption by pollution, dust, and biomass burning aerosols: A global model study and evaluation with AERONET measurements, Ann. Geophys., 27, 34393464.
  • Christopher, S. A., J. Zhang, Y. J. Kaufman, and L. A. Remer (2006), Satellite-based assessment of top of atmosphere anthropogenic aerosol radiative forcing over cloud-free oceans, Geophys. Res. Lett., 33(L15816), doi:10.1029/2005GL025535.
  • Chung, C. E., V. Ramanathan, D. Kim, and I. A. Podgorny (2005), Global anthropogenic aerosol direct forcing derived from satellite and ground-based observations, J. Geophys. Res., 110(D24207), doi:10.1029/2005JD006356.
  • Chylek, P., and J. Coakley (1974), Aerosols and climate, Science, 183, 7577.
  • Collins, W. D., P. J. Rasch, B. E. Eaton, B. V. Khattatov, J.-F. Lamarque, and C. S. Zender (2001), Simulating aerosols using a chemical transport model with assimilation of satellite aerosol retrievals: Methodology for INDOEX, J. Geophys. Res., 106, 73137336.
  • Doelling, D. R., N. G. Loeb, D. F. Keyes, M. L. Nordeen, D. Morstad, B. A. Wielicki, D. F. Young, and M. Sun (2013), Geostationary enhanced temporal interpolation for CERES flux products, J. Atmos. Oceanic Technol. (under revision).
  • Dubovik, O., B. Holben, T. Eck, A. Smirnov, Y. Kaufman, M. King, D. Tanre, and I. Slutsker (2002), Variability of absorption and optical properties of key aerosol types observed in worldwide locations, J. Atmos. Sci., 59, 590608.
  • Forster, P., et al. (2007), Changes in atmospheric constituents and in radiative forcing, in Climate Change 2007: The Physical Science Basis. Contribution of working group I to the Fourth Assessment Report of the IPCC, edited by S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  • Fu, Q., and K.-N. Liou (1992), On the correlated-k distribution method for radiative transfer in nonhomogenous atmospheres, J. Atmos. Sci., 49, 21392156.
  • Fu, Q., and K.-N. Liou (1993), Parameterization of the radiative properties of cirrus clouds, J. Atmos. Sci., 50, 20082025.
  • Ginoux, P., M. Chin, I. Tegen, J. Prospero, B. Holben, O. Dubovik, and S.-J. Lin (2001), Sources and global distributions of dust aerosols simulated with the GOCART model, J. Geophys. Res., 106, 20,25520,273.
  • Ginoux, P., J. Prospero, O. Torres, and M. Chin (2004), Long-term simulation of dust distribution with the GOCART model: Correlation with the North Atlantic Oscillation, Environ. Model. Software, 19, 113128.
  • Haywood, J., and K. Shine (1995), The effect of anthropogenic sulfate and soot on the clear sky planetary radiation budget, Geophys. Res. Lett., 22(5), 603606.
  • Hess, M., P. Koepke, and I. Schult (1998), Optical properties of aerosols and clouds: The software package OPAC, Bull. Am. Meteor. Soc., 79(5), 831844.
  • Hoffer, A., A. Gelencsér, P. Guyon, G. Kiss, O. Schmid, G. Frank, P. Artaxo, and M. Andreae (2006), Optical properties of humic-like substances (HULIS) in biomass-burning aerosols, Atmos. Chem. Phys., 6, 35633570.
  • Jin, Z., T. P. Charlock, W. L. Smith Jr., and K. Rutledge (2004), A parameterization of ocean surface albedo, Geophys. Res. Lett., 31(22), doi:10.1029/2004GL021180.
  • Kanakidou, M., J. H. Seinfeld, S. N. Pandis, I. Barnes, F. J. Dentener, M. C. Facchini, R. Van Dingenen, B. Ervens, A. Nenes, C. J. Nielsen, E. Swietlicki, J. P. Putaud, Y. Balkanski, S. Fuzzi, J. Horth, G. K. Moortgat, R. Winterhalter, C. E. L. Myhre, K. Tsigaridis, E. Vignati, E. G. Stephanou, and J. Wilson (2005), Organic aerosol and global climate modelling: A review, Atmospheric Chem. Phys., 5(4), 10531123.
  • Kaufman, J. Y., D. Tanre, O. Dubovik, A. Karnieli, and L. A. Remer (2001), Absorption of sunlight by dust as inferred from satellite and ground based remote sensing, Geophys. Res. Lett., 28, 14791483.
  • Kaufman, Y. J., O. Boucher, D. Tanre, M. Chin, L. A. Remer, and T. Takemura (2005), Aerosol anthropogenic component estimated from satellite data, Geophys. Res. Lett., 32(L17804), doi:10.1029/2005GL023125.
  • Kinne, S., U. Lohmann, J. Feichter, M. Schulz, C. Timmreck, S. Ghan, R. Easter, M. Chin, P. Ginoux, T. Takemura, I. Tegen, D. Koch, M. Herzog, J. Penner, G. Pitari, B. Holben, T. Eck, A. Smirnov, O. Dubovik, I. Slutsker, D. Tanre, O. Torres, M. Mishchenko, I. Geogdzhayev, D. Chu, and Y. Kaufman (2003), Monthly averages of aerosol properties: A global comparison among models, satellite data, and AERONET ground data, J. Geophys. Res., 108(D20), 4634, doi:10.1029/2001JD001253.
  • Kirchstetter, T., T. Novakov, and P. Hobbs (2004), Evidence that spectral dependence of light absorption by aerosols is affected by organic carbon, J. Geophys. Res., 109, D21208, doi:10.1029/2004JD004999.
  • Koffi, B., et al. (2012), Application of the CALIOP layer product to evaluate the vertical distribution of aerosols estimated by global models: AeroCom phase I results, J. Geophys. Res., 117(D10201), doi:10.1029/2011JD016858.
  • Levin, E. J. T., et al. (2010), Biomass burning smoke aerosol properties measured during Fire Laboratory at Missoula Experiments (FLAME), J. Geophys. Res., 115, D18210, doi:10.1029/2009JD013601.
  • Liao, H., and J. Seinfeld (1998), Effect of clouds on direct aerosol radiative forcing of climate, J. Geophys. Res., 103(D4), 37813788.
  • Loeb, N. G., and N. Manalo-Smith (2005), Top-of-atmosphere direct radiative effect of aerosols over global oceans from merged CERES and MODIS observations, J. Climate, 18, 35063526.
  • Loeb, N. G., and W. Su (2010), Direct aerosol radiative forcing uncertainty based on a radiative perturbation analysis, J. Climate, 23, 52885293, doi:10.1175/2010JCLI3543.1.
  • Matsui, T., and R. S. Pielke (2006), Measurement-based estimation of the spatial gradient of aerosol radiative forcing, Geophys. Res. Lett., 33(L11813), doi:10.1029/2006GL025974.
  • Minnis, P., W. L. J. Smith, D. P. Garber, J. K. Ayers, and D. R. Doelling (1995), Cloud properties derived from GOES-7 for the spring 1994 ARM intensive observing period using version 1.0.0 of the ARM satellite data analysis program, Tech. rep., NASA RP 1366.
  • Minnis, P., L. Nguyen, D. R. Doelling, D. F. Young, and W. Miller (2002), Rapid calibration of operational and research meteorological satellite imagers. Part I: Evaluation of research satellite visible channels as references, J. Atmos. Oceanic Technol., 19, 12331249.
  • Minnis, P., C. R. Trepte, S. Sun-Mack, Y. Chen, D. R. Doelling, D. F. Young, D. A. Spangenberg, W. F. Miller, B. A. Wielicki, R. R. Brown, S. C. Gibson, and E. B. Geier (2008), Cloud detection in nonpolar regions for CERES using TRMM VIRS and TERRA and AQUA MODIS data, IEEE Trans. Geosci. Remote Sens., 46(11), 38573884.
  • Minnis, P., D. F. Sun-Mack, S. Young, P. W. Heck, D. P. Garber, Y. Chen, D. A. Spangenberg, R. F. Arduini, Q. Z. Trepte, W. L. J. Smith, J. K. Ayers, S. C. Gibson, W. F. Miller, V. Chakrapani, Y. Takano, K. Liou, and Y. Xie (2011), CERES Edition-2 cloud property retrievals using TRMM VIRS and TERRA and AQUA MODIS data, Part I: Algorithms, IEEE Trans. Geosci. Remote Sens., 49(11), doi:10.1109/TGRS.2011.2144601.
  • Myhre, G. (2009), Consistency between satellite-derived and modeled estimates of the direct aerosol effect, Science, 325, 187190.
  • Podgorny, I. A., and V. Ramanathan (2001), A modeling study of the direct effect of aerosols over the tropical Indian Ocean, J. Geophys. Res., 106, 24,09724,105.
  • Quaas, J., O. Boucher, N. Bellouin, and S. Kinne (2008), Satellite-based estimate of the direct and indirect aerosol climate forcing, J. Geophys. Res., 113(D05204), doi:10.1029/2007JD008962.
  • Remer, L. A., Y. Kaufman, D. Tanre, S. Mattoo, D. A. Chu, J. V. Martins, and coauthours (2005), The MODIS aerosol algorithm, products, and validation, J. Atmos. Sci., 62, 947973.
  • Rose, F. G., and T. P. Charlock (2002), New Fu-Liou code tested with ARM Raman Lidar and CERES in pre-CALIPSO Sensitivity Study, in Extended Abstract for 11th Conference on Atmospheric Radiation, Ogden, UT, Amer. Meteor. Soc., P4.8.
  • Rutan, D., F. Rose, M. Roman, N. Manalo-Smith, C. B. Schaaf, and T. Charlock (2009), Development and assessment of broadband surface albedo from clouds and the Earth's Radiant Energy System Clouds and Radiation Swath data product, J. Geophys. Res., 114(D08125), doi:10.1029/2008JD010669.
  • Schnaiter, M., M. Gimmler, I. Llamas, C. Linke, C. Jäger, and H. Mutschke (2006), Strong spectral dependence of light absorption by organic carbon particles formed by propane combustion, Atmos. Chem. Phys., 6, 29812990.
  • Schulz, M., et al. (2006), Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations, Atmos. Chem. Phys., 6, 52255246.
  • Sinyuk, A., O. Torres, and O. Dubovik (2003), Combined use of satellite and surface observations to infer the imaginary part of refractive index of Saharan dust, Geophys. Res. Lett., 30, doi:10.1029/2002GL016189.
  • Stubenrauch, C. J., S. Kinne, and the GEWEX cloud assessment team (2009), Assessment of global cloud climatologies, GEWEX News, 19(1), 67.
  • Yang, S.-K., S. Zhou, and A. L. Miller (1999), SMOBA: A 3-dimensional daily ozone analysis using SBUV/2 and TOVS measurement, http://www.cpc.ncep.noaa.gov/products/stratosphere/SMOBA/.
  • Yu, H., R. E. Dickinson, M. Chin, J. Y. Kaufman, M. Zhou, L. Zhou, Y. Tian, O. Dubovik, and B. N. Holben (2004), Direct radiative effect of aerosols as determined from a combination of MODIS retrievals and GOCART simulations, J. Geophys. Res., 109, doi:10.1029/2003JD003914.
  • Yu, H., et al. (2006), A review of measurement-based assessments of the aerosol direct radiative effect and forcing, Atmos. Chem. Phys., 6, 613666.
  • Yu, H., P. K. Quinn, G. Feingold, L. A. Remer, R. A. Kahn, M. Chin, and S. Schwartz (2009), Remote sensing and in situ measurements of aerosol properties, burdens, and radiative forcing, in Atmospheric Aerosol Properties and Climate Impacts, edited by M. Chin, R. A. Kahn, and S. E. Schwartz, A Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research, National Aeronautics and Space Administration, Washington, D. C., USA.
  • Yu, H., M. Chin, D. M. Winker, A. H. Omar, Z. Liu, C. Kittaka, and T. Diehl (2010), Global view of aerosol vertical distributions from CALIPSO lidar measurements and GOCART simulations: Regional and seasonal variations, J. Geophys. Res., 115, doi:10.1029/2009JD013364.
  • Zhao, T. X.-P., H. Yu, I. Laszlo, M. Chin, and W. C. Conant (2008), Derivation of component aerosol direct radiative forcing at the top of atmosphere for clear-sky oceans, J. Quant. Spect. Rad. Trans., 109, 11621186.