SEARCH

SEARCH BY CITATION

References

  • Ackerman, A. S., M. P. Kirkpatrick, D. E. Stevens, and O. B. Toon (2004), The impact of humidity above stratiform clouds on indirect aerosol climate forcing, Nature, 432(7020), 1014-1017.
  • Andrejczuk, M., W. W. Grabowski, S. P. Malinowski, and P. K. Smolarkiewicz (2009), Numerical simulation of cloud–clear air interfacial mixing: Homogeneous versus inhomogeneous mixing, J. Atmos. Sci., 66(8), 24932500, doi:10.1175/2009JAS2956.1.
  • Baker, M. B., and J. Latham (1979), The evolution of droplet spectra and the rate of production of embryonic raindrops in small cumulus clouds, J. Atmos. Sci., 36(8), 1612-1615, doi:10.1175/1520-0469(1979)036<1612:TEODSA>2.0.CO;2.
  • Baker, M. B., R. G. Corbin, and J. Latham (1980), The influence of entrainment on the evolution of cloud droplet spectra: I. A model of inhomogeneous mixing, Q. J. Roy. Meteor. Soc., 106(449), 581598, doi:10.1002/qj.49710644914.
  • Baker, M. B., R. E. Breidenthal, T. W. Choularton, and J. Latham (1984), The effects of turbulent mixing in clouds, J. Atmos. Sci., 41(2), 299304, doi:10.1175/1520-0469(1984)041<0299:TEOTMI>2.0.CO;2.
  • Baumgardner, D., W. Strapp, and J. Dye (1985), Evaluation of the forward scattering spectrometer probe. Part II: Corrections for coincidence and dead-time losses, J. Atmos. Ocean. Tech., 2(4), 626632, doi:10.1175/1520-0426(1985)002<0626:EOTFSS>2.0.CO;2.
  • Baumgardner, D. (1987), Corrections for the Response Times of Particle Measuring Probes, Paper Presented at 6th Symposium on Meteorological Observations and Instrumentation, American Meteorological Society, New Orleans, USA.
  • Baumgardner, D., and M. Spowart (1990), Evaluation of the forward scattering spectrometer probe. Part III: Time response and laser inhomogeneity limitations, J. Atmos. Ocean. Tech., 7(5), 666672, doi:10.1175/1520-0426(1990)007<0666:EOTFSS>2.0.CO;2.
  • Burnet, F., and J. L. Brenguier (2007), Observational study of the entrainment-mixing process in warm convective clouds, J. Atmos. Sci., 64(6), 1995-2011, doi:10.1175/JAS3928.1.
  • Chosson, F., J.-L. Brenguier, and L. Schüller (2007), Entrainment-mixing and radiative transfer simulation in boundary layer clouds, J. Atmos. Sci., 64(7), 26702682, doi:10.1175/JAS3975.1.
  • Del Genio, A. D., and J. Wu (2010), The role of entrainment in the diurnal cycle of continental convection, J. Climate, 23(10), 2722-2738, doi: 10.1175/2009JCLI3340.1.
  • Devenish, B. J., et al. (2012), Droplet growth in warm turbulent clouds, Q. J. Roy. Meteor. Soc., 138 14011429, doi: 10.1002/qj.1897.
  • Dye, J., and D. Baumgardner (1984), Evaluation of the forward scattering spectrometer probe. Part I: Electronic and optical studies, J. Atmos. Ocean. Tech., 1(4), 329344, doi:10.1175/1520-0426(1984)001 < 0329:EOTFSS > 2.0.CO;2.
  • Freud, E., D. Rosenfeld, M. O. Andreae, A. A. Costa, and P. Artaxo (2008), Robust relations between CCN and the vertical evolution of cloud drop size distribution in deep convective clouds, Atmos. Chem. Phys., 8(6), 1661-1675.
  • Freud, E., D. Rosenfeld, and J. R. Kulkarni (2011), Resolving both entrainment-mixing and number of activated CCN in deep convective clouds, Atmos. Chem. Phys., 11(24), 12887-12900.
  • Gerber, H. E., G. M. Frick, J. B. Jensen, and J. G. Hudson (2008), Entrainment, mixing, and microphysics in trade-wind cumulus, J. Meteorol. Soc. Japan, 86A 87106.
  • Grabowski, W. W. (2006), Indirect impact of atmospheric aerosols in idealized simulations of convective-radiative quasi equilibrium, J. Climate, 19(18), 46644682, doi:10.1175/JCLI3857.1.
  • Haman, K. E., S. P. Malinowski, M. J. Kurowski, H. Gerber, and J.-L. Brenguier (2007), Small scale mixing processes at the top of a marine stratocumulus—A case study, Q. J. Roy. Meteor. Soc., 133(622), 213226, doi:10.1002/qj.5.
  • Hicks, E., C. Pontikis, and A. Rigaud (1990), Entrainment and mixing processes as related to droplet growth in warm midlatitude and tropical clouds, J. Atmos. Sci., 47(13), 15891618.
  • Hill, A. A., G. Feingold, and H. Jiang (2009), The influence of entrainment and mixing assumption on aerosol-cloud interactions in marine stratocumulus, J. Atmos. Sci., 66(5), 14501464.
  • Jeffery, C. A. (2007), Inhomogeneous cloud evaporation, invariance, and Damköhler number, J. Geophys. Res., 112 D24S21, doi:10.1029/2007jd008789.
  • Jensen, J. B., P. H. Austin, M. B. Baker, and A. M. Blyth (1985), Turbulent mixing, spectral evolution and dynamics in a warm cumulus cloud, J. Atmos. Sci., 42(2), 173192, doi:10.1175/1520-0469(1985)042<0173:TMSEAD>2.0.CO;2.
  • Jensen, J. B., and M. B. Baker (1989), A simple model of droplet spectral evolution during turbulent mixing, J. Atmos. Sci., 46(18), 28122829, doi:10.1175/1520-0469(1989)046 < 2812:ASMODS > 2.0.CO;2.
  • Kerstein, A. R. (1988), A linear-eddy model of turbulent scalar transport and mixing, Combust. Sci. Technol. , 60(4-6), 391421.
  • Kerstein, A. R. (1992), Linear-eddy modelling of turbulent transport. Part 7. Finite-rate chemistry and multi-stream mixing, J. Fluid Mech., 240(1), 289313.
  • Kim, B.-G., M. A. Miller, S. E. Schwartz, Y. Liu, and Q. Min (2008), The role of adiabaticity in the aerosol first indirect effect, J. Geophys. Res., 113(D5), D05210, doi: 10.1029/2007jd008961.
  • Krueger, S., C. Su, and P. McMurtry (1997), Modeling entrainment and finescale mixing in cumulus clouds, J. Atmos. Sci., 54 26972712, doi:10.1175/1520-0469(1997)054<2697:MEAFMI>2.0.CO;2.
  • Krueger, S. K. (2008), Fine-scale modeling of entrainment and mixing of cloudy and clear air, Paper Presented at the 15th International Conference on Clouds and Precipitation, Cancun, Mexico.
  • Kumar, B., J. Schumacher, and R. Shaw (2012), Cloud microphysical effects of turbulent mixing and entrainment, Theor Comp Fluid Dyn 116.
  • Lasher-Trapp, S. G., W. A. Cooper, and A. M. Blyth (2005), Broadening of droplet size distributions from entrainment and mixing in a cumulus cloud, Q. J. Roy. Meteor. Soc., 131(605), 195220, doi:10.1256/qj.03.199.
  • Lehmann, K., H. Siebert, and R. A. Shaw (2009), Homogeneous and inhomogeneous mixing in cumulus clouds: Dependence on local turbulence structure, J. Atmos. Sci., 66 36413659, doi:10.1175/2009JAS3012.1.
  • Lu, C., Y. Liu, and S. Niu (2011), Examination of turbulent entrainment-mixing mechanisms using a combined approach, J. Geophys. Res., 116 D20207, doi:10.1029/2011JD015944.
  • Lu, C., Y. Liu, and S. Niu (2013), A method for distinguishing and linking turbulent entrainment mixing and collision-coalescence in stratocumulus clouds, Chin. Sci. Bull., doi:10.1007/s11434-012-5556-6, in press.
  • Lu, C., Y. Liu, S. Niu, and A. M. Vogelmann (2012a), Observed impacts of vertical velocity on cloud microphysics and implications for aerosol indirect effects, Geophys. Res. Lett., 39(21), L21808.
  • Lu, C., Y. Liu, S. Niu, and A. M. Vogelmann (2012b), Lateral entrainment rate in shallow cumuli: Dependence on dry air sources and probability density functions, Geophys. Res. Lett., 39(20), L20812.
  • Lu, C., Y. Liu, S. S. Yum, S. Niu, and S. Endo (2012c), A new approach for estimating entrainment rate in cumulus clouds, Geophys. Res. Lett., 39 L04802, doi:10.1029/2011GL050546.
  • Morrison, H., and W. W. Grabowski (2008), Modeling supersaturation and subgrid-scale mixing with two-moment bulk warm microphysics, J. Atmos. Sci., 65(3), 792812, doi:10.1175/2007JAS2374.1.
  • Paluch, I. R., and D. G. Baumgardner (1989), Entrainment and fine-scale mixing in a continental convective cloud, J. Atmos. Sci., 46(2), 261278, doi:10.1175/1520-0469(1989)046<0261:EAFSMI>2.0.CO;2.
  • Pawlowska, H., J. L. Brenguier, and F. Burnet (2000), Microphysical properties of stratocumulus clouds, Atmos. Res., 55(1), 1533.
  • Raga, G. B., J. B. Jensen, and M. B. Baker (1990), Characteristics of cumulus band clouds off the coast of Hawaii, J. Atmos. Sci., 47(3), 338356, doi:10.1175/1520-0469(1990)047<0338:COCBCO>2.0.CO;2.
  • Rogers, R. R., and M. K. Yau (1989), A Short Course in Cloud Physics, Butterworth Heinemann, Burlington, MA, USA.
  • Romps, D. M., and Z. Kuang (2010), Nature versus nurture in shallow convection, J. Atmos. Sci., 67(5), 16551666, doi: 10.1175/2009JAS3307.1.
  • Schlüter, M. H. (2006), The effects of entrainment and mixing processes on the droplet size distributions in cumuli, Master thesis, University of Utah, Salt Lake City, Utah, USA.
  • Siebert, H., H. Franke, K. Lehmann, R. Maser, E. Wei Saw, D. Schell, R. A. Shaw, and M. Wendisch (2006), Probing finescale dynamics and microphysics of clouds with helicopter-borne measurements, Bull. Am. Meteorol. Soc., 87(12), 17271738, doi:10.1175/BAMS-87-12-1727.
  • Slawinska, J., W. W. Grabowski, H. Pawlowska, and A. A. Wyszogrodzki (2008), Optical properties of shallow convective clouds diagnosed from a bulk-microphysics large-eddy simulation, J. Climate, 21(7), 16391647.
  • Slawinska, J., W. W. Grabowski, H. Pawlowska, and H. Morrison (2012), Droplet activation and mixing in large-eddy simulation of a shallow cumulus field, J. Atmos. Sci., 69(2), 444462.
  • Su, C.-W., S. K. Krueger, P. A. McMurtry, and P. H. Austin (1998), Linear eddy modeling of droplet spectral evolution during entrainment and mixing in cumulus clouds, Atmos. Res., 47-48 4158.
  • Wyngaard, J. C. (2010), Turbulence in the Atmosphere, Cambridge University Press, New York.
  • Yum, S. (1998), Cloud droplet spectral broadening in warm clouds: An observational and model study, PhD thesis, University of Nevada, Reno, Nevada, USA.