SEARCH

SEARCH BY CITATION

References

  • Alexander, M. J., and C. D. Barnet (2007), Using satellite observations to constrain gravity wave parameterizations for global models, J. Atmos. Sci., 64(5), 16521665.
  • Alexander, M. J., and L. Pfister (1995), Gravity wave momentum flux in the lower stratosphere over convection, Geophys. Res. Lett., 22(15), 20292032.
  • Alexander, M. J., and H. Teitelbaum (2007), Observation and analysis of a large amplitude mountain wave event over the Antarctic Peninsula, J. Geophys. Res., 112(D21103), doi:10.1029/2006JD008368.
  • Alexander, M. J., and H. Teitelbaum (2011), Three-dimensional properties of Andes mountain waves observed by satellite: A case study, J. Geophys. Res., 116(D23110), doi:10.1029/2011JD016151.
  • Alexander, M. J., et al. (2008), Global estimates of gravity wave momentum flux from High Resolution Dynamics Limb Sounder (HIRDLS) observations, J. Geophys. Res., 113(D15S18), doi:10.1029/2007JD008807.
  • Alexander, M. J., S. D. Eckermann, D. Broutman, and J. Ma (2009a), Momentum flux estimates for South Georgia Island mountain waves in the stratosphere observed via satellite, Geophys. Res. Lett., 36(12), doi:10.1029/2009GL038587
  • Alexander, S. P., A. R. Klekociuk, and T. Tsuda (2009b), Gravity wave and orographic wave activity observed around the Antarctic and Arctic stratospheric vortices by the COSMIC GPS-RO satellite constellation, J. Geophys. Res., 114(D17103), doi:10.1029/2009JD011851.
  • Amante, C., and B. W. Eakins (2009), ETOPO1 1 arc-minute global relief model: Procedures, data sources and analysis, NOAA Technical Memorandum NESDIS NGDC-24, http://www.ngdc.noaa.gov/mgg/global/global.html.
  • Aumann, H. H., D. T. Gregorich, S. L. Gaiser, D. F. Hagan, T. S. Pagano, L. L. Strow, and D. Ting (2000), AIRS Level 1B Algorithm Thoretical Basis Document (ATBD) Part 1 (IR), Tech. rep., NASA, http://eospso.gsfc.nasa.gov/eos_homepage/for_scientists/atbd.
  • Aumann, H. H., et al. (2003), AIRS/AMSU/HSB on the Aqua mission: Design, science objective, data products, and processing systems, in IEEE Trans. Geosci. Remote Sens., vol. 41, pp. 253264.
  • Aumann, H. H., D. Gregorich, and S. M. DeSouza-Machado (2006), AIRS observations of deep convective clouds, in SPIE Photonics Conference, 6301–20, San Diego.
  • Aumann, H. H., D. T. Gregorich, S. E. Broberg, and D. A. Elliott (2007), Seasonal correlations of SST, water vapor, and convective activity in tropical oceans: A new hyperspectral data set for climate model testing, Geophys. Res. Lett., 34(L15813), doi:10.1029/2006GL029191.
  • Aumann, H. H., A. Ruzmaikin, and J. Teixeira (2008), Frequency of severe storms and global warming, Geophys. Res. Lett.., 35(L19805), doi:10.1029/2008GL034562.
  • Aumann, H. H., S. G. DeSouza-Machado, and A. Behrangi (2011), Deep convective clouds at the tropopause, Atmos. Chem. Phys., 11(3), 11671176.
  • Avdiushin, S. I., A. Danilov, and A. A. Starovatov (1994), Variations of the total ozone above the central Asian mountains, Adv. Space Res., 14(9), 169176.
  • Bacmeister, J. T., M. R. Schoeberl, L. R. Lait, P. A. Newman, and B. Gary (1990), ER-2 mountain wave encounter over Antarctica: Evidence for blocking, Geophys. Res. Lett., 17(1), 8184.
  • Baumgaertner, A. J. G., and A. J. McDonald (2007), A gravity wave climatology for Antarctica compiled from Challenging Minisatellite Payload/Global Positioning System (CHAMP/GPS) radio occultations, J. Geophys. Res., 112(D05103), doi:10.1029/2006JD007504.
  • Becker, E., and C. McLandress (2009), Consistent scale interaction of gravity waves in the doppler spread parameterization, J. Atmos. Sci., 66, 14341449.
  • Bruintjes, R. T., T. L. Clark, and W. D. Hall (1994), Interactions between topographic airflow and cloud/precipitation development during the passage of a winter storm in Arizona, J. Atmos. Sci., 51(1), 4867.
  • Carslaw, K. S., et al. (1998), Increased stratospheric ozone depletion due to mountain-induced atmospheric waves, Nature, 391, 675678.
  • Das, S. K., A. Taori, and A. Jayaraman (2011), On the role of dust storms in triggering atmospheric gravity waves observed in the middle atmosphere, Annales Geophysicae, 29(9), 16471654.
  • de la Torre, A., P. Alexander, P. Llamedo, C. Menéndez, T. Schmidt, and J. Wickert (2006), Gravity waves above the Andes detected from GPS radio occultation temperature profiles: Jet mechanism?, J. Geophys. Res., 33(L24810), doi:10.1029/2006GL027343.
  • de la Torre, A., P. Alexander, R. Hierro, P. Llamedo, A. Rolla, T. Schmidt, and J. Wickert (2012), Large-amplitude gravity waves above the southern Andes, the Drake Passage, and the Antarctic Peninsula, J. Geophys. Res., 117(D02106), doi:10.1029/2011JD016377.
  • Dörnbrack, A., M. Leutbecher, R. Kivi, and E. Kyrö (1999), Mountain-wave-induced record low stratospheric temperatures above northern Scandinavia, Tellus A, Dyn Meteorol Oceanogr, 51(5), 951963.
  • Dörnbrack, A., T. Birner, A. Fix, H. Flentje, A. Meister, H. Schmid, E. V. Browell, and M. J. Mahoney (2002), Evidence for inertia gravity waves forming polar stratospheric clouds over Scandinavia, J. Geophys. Res., D20, doi:10.1029/2001JD000452.
  • Doyle, J. D., and M. A. Shapiro (1999), Flow response to large-scale topography: The Greenland tip jet, Tellus, 51(5), 728748.
  • Durran, D. R., and J. B. Klemp (1987), Another look at downslope winds. Part II: nonlinear amplification beneath wave-overturning layers, J. Atmos. Sci., 44(22), 34023412.
  • Eckermann, S. D., and P. Preusse (1999), Global measurements of stratospheric mountain waves from space, Science, 286(5444), 15341537.
  • Eckermann, S. D., et al. (2006), Imaging gravity waves in lower stratospheric AMSU-A radiances, part 2: Validation case study, Atmos. Chem. Phys., 6(11), 33433362.
  • Eckermann, S. D., J. Ma, D. L. Wu, and D. Broutman (2007), A three-dimensional mountain wave imaged in satellite radiance throughout the stratosphere: Evidence of the effects of directional wind shear, Quart. J. Roy. Meteorol. Soc., 133, 19591975.
  • Eckermann, S. D., L. Hoffmann, M. Höpfner, D. L. Wu, and M. J. Alexander (2009), Antarctic NAT PSC belt of June 2003: Observational validation of the mountain wave seeding hypothesis, Geophys. Res. Lett., 36(L02807), doi:10.1029/2008GL036629.
  • Ern, M., P. Preusse, M. J. Alexander, and C. D. Warner (2004), Absolute values of gravity wave momentum flux derived from satellite data, J. Geophys. Res., 109(D20103), doi:10.1029/2004JD004752.
  • Ern, M., P. Preusse, J. C. Gille, C. L. Hepplewhite, M. G. Mlynczak, J. M. Russell III, and M. Riese (2011), Implications for atmospheric dynamics derived from global observations of gravity wave momentum flux in stratosphere and mesosphere, J. Geophys. Res., 116(D19107), doi:10.1029/2011JD015821.
  • Frey, H. U., S. B. Mende, J. F. Arens, P. R. McCullough, and G. R. Swenson (2000), Atmospheric gravity wave signatures in the infrared hydroxyl OH airglow, Geophys. Res. Lett., 27(1), 4144.
  • Fritts, D. C., and M. J. Alexander (2003), Gravity wave dynamics and effects in the middle atmosphere, Rev. Geophys., 41(1), doi:10.1029/2001RG000106.
  • Gong, J., D. L. Wu, and S. D. Eckermann (2012), Gravity wave variances and propagation derived from AIRS radiances, Atmos. Chem. Phys., 12(4), 17011720.
  • Grimsdell, A. W., M. J. Alexander, P. T. May, and L. Hoffmann (2010), Model study of waves generated by convection with direct validation via satellite, J. Atmos. Sci., 67(5), 16171631.
  • Hecht, J. H., et al. (2009), Imaging of atmospheric gravity waves in the stratosphere and upper mesosphere using satellite and ground-based observations over Australia during the TWPICE campaign, J. Geophys. Res., 114(D18123), doi:10.1029/2008JD011259.
  • Hertzog, A., G. Boccara, R. A. Vincent, F. Vial, and P. Cocquerez (2008), Estimation of gravity wave momentum flux and phase speeds from quasi-Lagrangian stratospheric balloon flights. Part II: Results from the Vorcore campaign in Antarctica, J. Atmos. Sci., 65, 30563070.
  • Hoffmann, L., and M. J. Alexander (2009), Retrieval of stratospheric temperatures from Atmospheric Infrared Sounder radiance measurements for gravity wave studies, J. Geophys. Res., 114(D07105), doi:10.1029/2008JD011241.
  • Hoffmann, L., and M. J. Alexander (2010), Occurrence frequency of convective gravity waves during the North American thunderstorm season, J. Geophys. Res., 115(D20111), doi:10.1029/2010JD014401.
  • Holton, J. R. (1982), The role of gravity wave induced drag and diffusion on the momentum budget of the mesosphere, J. Atmos. Sci., 39(4), 791799.
  • Holton, J. R. (1983), The influence of gravity wave breaking on the general circulation of the middle atmosphere, J. Atmos. Sci., 40(10), 24972507.
  • Jiang, J. H., D. L. Wu, and S. D. Eckermann (2002), Upper Atmosphere Research Satellite (UARS) MLS observation of mountain waves over the Andes, J. Geophys. Res., 107(D20), doi:10.1029/2002JD002091.
  • Jiang, J. H., B. Wang, K. Goya, K. Hocke, S. D. Eckermann, J. Ma, D. L. Wu, and W. J. Read (2004), Geographical distribution and interseasonal variability of tropical deep convection: UARS MLS observations and analyses, J. Geophys. Res., 109(D03111), doi:10.1029/2003JD003756.
  • Jiang, J. H., S. D. Eckermann, D. L. Wu, K. Hocke, B. Wang, J. Ma, and Y. Zhang (2005), Seasonal variation of gravity wave sources from satellite observation, Adv. Space Res., 35(11), 19251932.
  • Jiang, J. H., S. D. Eckermann, D. L. Wu, and D. Y. Wang (2006), Inter-annual variation of gravity waves in the Arctic and Antarctic winter middle atmosphere, Adv. Space Res., 38(11), 24182423.
  • Kalnay, E., et al. (1996), The NCEP/NCAR 40-year reanalysis project, Bull. Amer. Meteorol. Soc., 77(3), 437471.
  • Kazimirovsky, E. S., and A. D. Danilov (1997), The total ozone content and orography, Adv. Space Res., 20(6), 12651268.
  • Kim, S., H. Chun, and D. L. Wu (2009), A study on stratospheric gravity waves generated by Typhoon Ewiniar: Numerical simulations and satellite observations, J. Geophys. Res., 114(D22104), doi:10.1029/2009JD011971.
  • Kuester, M. A., M. J. Alexander, and E. A. Ray (2008), A model study of gravity waves over hurricane Humberto (2001), J. Atmos. Sci., 65(10), 32313246.
  • Lambert, A., M. L. Santee, D. L. Wu, and J. H. Chae (2012), A-train CALIOP and MLS observations of early winter Antarctic polar stratospheric clouds and nitric acid in 2008, Atmos. Chem. Phys., 12(6), 28992931, doi:10.5194/acp-12-2899-2012.
  • Limpasuvan, V., D. L. Wu, M. J. Alexander, M. Xue, M. Hu, S. Pawson, and J. R. Perkins (2007), Stratospheric gravity wave simulation over Greenland during 24 January 2005, J. Geophys. Res., 112(D10115), doi:10.1029/2006JD007823.
  • Lindzen, R. S. (1981), Turbulence and stress due to gravity wave and tidal breakdown, J. Geophys. Res., 86, 97079714.
  • Llamedo, P., A. de la Torre, P. Alexander, D. Luna, T. Schmidt, and J. Wickert (2009), A gravity wave analysis near to the Andes Range from GPS radio occultation data and mesoscale numerical simulations: Two case studies, Adv. Space Res., 44(4), 494500.
  • Magalhaes, J. M., I. B. Araújo, J. C. B. da Silva, R. H. J. Grimshaw, K. Davis, and J. Pineda (2011), Atmospheric gravity waves in the Red Sea: a new hotspot, Nonlin. Proc. Geophys., 18(1), 7179.
  • McDonald, A. J., S. E. George, and R. M. Woollands (2009), Can gravity waves significantly impact PSC occurrence in the Antarctic?, Atmos. Chem. Phys., 9(22), 88258840.
  • McLandress, C., M. J. Alexander, and D. L. Wu (2000), Microwave Limb Sounder observations of gravity waves in the stratosphere: A climatology and interpretation, J. Geophys. Res., 105(D9), 11,94711,967.
  • Nastrom, G. D., and D. C. Fritts (1992), Sources of mesoscale variability of gravity waves. Part I: topographic excitation, J. Atmos. Sci., 49(2), 101110.
  • Parkinson, C. L. (2003), Aqua: an Earth-observing satellite mission to examine water and other climate variables, in IEEE Trans. Geosci. Remote Sens., vol. 41, pp. 173183.
  • Pfister, L., W. Starr, R. Craig, M. Loewenstein, and M. Legg (1986), Small-scale motions observed by aircraft in the tropical lower stratosphere: Evidence for mixing and its relationship to large-scale flows, J. Atmos. Sci., 43(24), 32103225.
  • Plougonven, R., A. Hertzog, and H. Teitelbaum (2008), Observations and simulations of a large-amplitude mountain wave breaking over the Antarctic Peninsula, J. Geophys. Res., 113(D16113), doi:10.1029/2007JD009739.
  • Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (2002), Numerical Recipes in C, The Art of Scientific Computing, vol. 1, 2. ed., Cambridge University Press: Cambridge, UK.
  • Preusse, P., S. D. Eckermann, and M. Ern (2008), Transparency of the atmosphere to short horizontal wavelength gravity waves, J. Geophys. Res., 113(D24), doi:10.1029/2007JD009682.
  • Preusse, P., S. Schroeder, L. Hoffmann, M. Ern, F. Friedl-Vallon, J. Ungermann, H. Oelhaf, H. Fischer, and M. Riese (2009), New perspectives on gravity wave remote sensing by spaceborne infrared limb imaging, Atmos. Meas. Tech., 2, 299311.
  • Romps, D. M., and Z. Kuang (2009), Overshooting convection in tropical cyclones, Geophys. Res. Lett., 36(9), doi:10.1020/2009GL037396.
  • Sassen, K., Z. Wang, and D. Liu (2009), Cirrus clouds and deep convection in the tropics: Insights from CALIPSO and CloudSat, J. Geophys. Res., 114(D00H06), doi:10.1029/2009JD011916.
  • Smith, R. B. (1985), On severe downslope winds., J. Atmos. Sci., 42(23), 25972603.
  • Tsuda, T., Y. Murayama, H. Wiryosumarto, S. W. B. Harijono, and S. Kato (1994), Radiosonde observations of equatorial atmosphere dynamics over Indonesia. 2. characteristics of gravity waves, J. Geophys. Res., 99(D5), 10,50710,516.
  • Vadas, S. L., D. C. Fritts, and M. J. Alexander (2003), Mechanism for the generation of secondary waves in wave breaking regions, J. Atmos. Sci., 60, 194214.
  • Vadas, S. L., et al. (2009), Convection: the likely source of the medium-scale gravity waves observed in the OH airglow layer near Brasilia, Brazil, during the SpreadFEx campaign, Annales Geophysicae, 27, 231259.
  • Vadas, S. L., J. Yue, and T. Nakamura (2012), Mesospheric concentric gravity waves generated by multiple convective storms over the North American Great Plain, J. Geophys. Res., doi:10.1029/2011JD017025, in press.
  • Vincent, R. A., and M. J. Alexander (2000), Gravity waves in the tropical lower stratosphere: An observational study of seasonal and interannual variability, J. Geophys. Res., 105(D14), 17,97117,982.
  • Vincent, R. A., A. Hertzog, G. Boccara, and F. Vial (2007), Quasi-Lagrangian superpressure balloon measurements of gravity-wave momentum fluxes in the polar stratosphere of both hemispheres, Geophys. Res. Lett., 34(L19804), doi:10.1029/2007GL031072.
  • Wu, D. L. (2004), Mesoscale gravity wave variances from AMSU-A radiances, Geophys. Res. Lett., 31(L12114), doi:10.1029/2004GL019562.
  • Wu, D. L., and J. H. Jiang (2002), MLS observations of atmospheric gravity waves over Antarctica, J. Geophys. Res., 107(4773), doi:10.1029/2002JD002390.
  • Wu, D. L., and F. Zhang (2004), A study of mesoscale gravity waves over the North Atlantic with satellite observations and a mesoscale model, J. Geophys. Res., 109(D22104), doi:10.1029/2004JD005090.
  • Wu, D. L., P. Preusse, S. D. Eckermann, J. H. Jiang, M. de la Torre Juarez, L. Coy, B. Lawrence, and D. Y. Wang (2006), Remote sounding of atmospheric gravity waves with satellite limb and nadir techniques, Adv. Space Res., 37, 22692277.
  • Yue, J., et al. (2009), Concentric gravity waves in the mesosphere generated by deep convective plumes in the lower atmosphere near Fort Collins, Colorado, J. Geophys. Res., 114(D06104), doi:10.1029/2008JD011244.