SEARCH

SEARCH BY CITATION

References

  • Adams, J. B. (1974), Visible and near-infrared diffuse reflectance spectra of pyroxene as applied to remote sensing of solid objects in the solar system, J. Geophys. Res., 79(32), 48294836, doi:10.1029/JB079i032p04829.
  • Allen, C. C., R. V. Morris, D. J. Lindstrom, M. M. Lindstrom, and J. P. Lockwood (1997), JSC Mars-1: Martian regolith simulant, Lunar Planet. Sci. Conf., XXVIII, Abstract 1797.
  • Arvidson, R. E., F. Poulet, J.-P. Bibring, M. J. Wolff, A. Gendrin, R. V. Morris, J. J. Freeman, Y. Langevin, N. Mangold, and G. Bellucci (2005), Spectral reflectance and morphologic correlations in eastern Terra Meridiani, Mars, Science, 307, 15911594, doi:10.1126/science.1109509.
  • Arvidson, R. E., et al. (2006), Nature and origin of the hematite bearing plains of Terra Meridiani based on analyses of orbital and Mars Exploration rover data sets, J. Geophys. Res., 111, E12S08, doi:10.1029/2006JE002728.
  • Bibring, J.-P., et al. (2004), OMEGA: Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité, in Mars Express: The Scientific Payload, edited by A. Wilson, Eur. Space Agency Spec. Publ., ESA SP-1240, 3749.
  • Bibring, J.-P., et al. (2005), Mars surface diversity as revealed by the OMEGA/Mars Express observations, Science, 307(5715), 15761581, doi:10.1126/science.1109509.
  • Bishop, J. L., and E. Murad (1996), Schwertmannite on Mars? Spectroscopic analyses of schwertmannite, its relationship to other ferric minerals, and its possible presence in the surface material on Mars, in Mineral Spectroscopy: A Tribute to Roger G. Burns, Geochem. Soc. Spec. Publ., vol. 5, edited by M. D. Dyar, C. McCammon, and M. W. Schaefer, pp. 337358, Geochem. Soc., Houston, Texas.
  • Burns, R. G. (1993), Mineralogical Applications of Crystal Field Theory, 2nd ed., 551 pp., Cambridge Univ. Press, New York.
  • Burton, E. D., R. T. Bush, L. A. Sullivan, and D. R. G. Mitchell (2008), Schwertmannite transformation to goethite via the Fe(II) pathway: Reaction rates and implications for iron-sulfide formation, Geochim. Cosmochim. Acta, 72, 45514564, doi:10.1016/j.gca.2008.06.019.
  • Christensen, P. R., et al. (2001), Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results, J. Geophys. Res., 106(E10), 23,82323,871, doi:10.1029/2000JE001370.
  • Clancy, R. T., M. J. Wolff, and P. R. Christensen (2003), Mars aerosol studies with the MGS TES emission phase function observations: Optical depths, particle sizes, and ice cloud types versus latitude and solar longitude, J. Geophys. Res., 108(E9), 5098, doi:10.1029/2003JE002058.
  • Cloutis, E. A., et al. (2006), Detection and discrimination of sulfate minerals using reflectance spectroscopy, Icarus, 184, 121157, doi:10.1016/j.icarus.2006.04.003.
  • Combe, J.-P., et al. (2008), Analysis of OMEGA/Mars Express data hyperspectral data using a Multiple-Endmember Linear Spectral Unmixing Model (MELSUM): Methodology and first results, Planet. Space Sci., 56, 951975, doi:10.1016/j.pss.2007.12.007.
  • Conrath, B. J., J. C. Pearl, M. D. Smith, W. C. Maguire, P. R. Christensen, S. Dason, and M. S. Kaelberer (2000), Mars Global Surveyor Thermal Emission Spectrometer (TES) observations: Atmospheric temperatures during aerobraking and science phasing, J. Geophys. Res., 105(E4), 95099519, doi:10.1029/1999JE001095.
  • Cull, S., R. E. Arvidson, M. Mellon, S. Wiseman, R. Clark, T. Titus, R. V. Morris, and P. McGuire (2010), Seasonal H2O and CO2 ice cycles at the Mars Phoenix landing site: 1. Prelanding CRISM and HiRISE observations, J. Geophys. Res., 115, E00D16, doi:10.1029/2009JE003340.
  • Gendrin, A., et al. (2005), Sulfate in Martian layered terrains: The OMEGA/Mars Express view, Science, 307, 15871591, doi:10.1126/science.1109087.
  • Glotch, T. D., and P. R. Christensen (2005), Geologic and mineralogic mapping of Aram Chaos: Evidence for a water-rich history, J. Geophys. Res., 110, E09006, doi:10.1029/2004JE002389.
  • Hapke, B. (1993), Theory of Reflectance and Emittance Spectroscopy, Cambridge Univ. Press, Cambridge, U. K.
  • Hurowitz, J. A., W. W. Fischer, N. J. Tosca, and R. E. Milliken (2010), Origin of acidic surface waters and the evolution of atmospheric chemistry on early Mars, Nat. Geosci., 3, 323326, doi:2010/1038/ngeo2831.
  • Jouglet, D., F. Poulet, J. Mustard, R. Milliken, J.-P. Bibring, Y. Langevin, and B. Gondet (2007a), Hydration state of the Martian surface as seen by Mars Express OMEGA: 1. Analysis of the 3 μm hydration feature, J. Geophys. Res., 112, E08S06, doi:10.1029/2006JE002846.
  • Jouglet, D., F. Poulet, J.-P. Bibring, Y. Langevin, and B. Gondet (2007b), Search for Carbonates on Mars with the OMEGA/Mars Express Data, in Seventh International Conference on Mars, July 9–13, 2007, Pasadena CA[CD-ROM],LPI Contrib., 1353, Abstract 3121.
  • Kumpulainen, S., M. L. Raisanen, F. Von Der Kammer, and T. Hofmann (2008), Ageing of synthetic and natural schwertmannites at pH 2–8, Clay Miner., 43, 437448, doi:10.1180/claymin.2008.043.3.08.
  • Langevin, Y., F. Poulet, J.-P. Bibring, and B. Gondet (2005a), Sulfates in the north polar region of Mars detected by OMEGA/Mars Express, Science, 307, 15841586, doi:10.1126/science.1109091.
  • Lichtenberg, K. A., et al. (2010), Stratigraphy of hydrated sulfates in the sedimentary deposits of Aram Chaos, Mars, J. Geophys. Res., 115, E00D17, doi:10.1029/2009JE003353.
  • Ling, Z. C., and A. Wang (2010), A systematic spectroscopic study of eight hydrous ferric sulfates relevant to Mars, Icarus, 209, 422433, doi:10.1016/j.icarus.2010.05.009.
  • Majzlan, J., A. Navrotsky, and U. Schwertmann (2004), Thermodynamics of iron oxides: Part III. Enthalpies of formation and stability of ferrihydrite (∼Fe(OH)3), schwertmannite (∼FeO(OH)3/4(SO4)1/8), and ε-Fe2O3, Geochim. Cosmochim. Acta, 68, 10491059, doi:10.1016/S0016-7037(03)00371-5.
  • Massé, M., S. Le Mouelic, O. Bourgeois, J. P. Combe, L. Le Deit, C. Sotin, J.-P. Bibring, B. Gondet, and Y. Langevin (2008), Mineralogical composition, structure, morphology, and geological history of Aram Chaos crater fill on Mars derived from OMEGA Mars Express data, J. Geophys. Res., 113, E12006, doi:10.1029/2008JE003131.
  • Mellon, M. T., W. C. Feldman, and T. H. Prettyman (2004), The presence and stability of ground ice in the southern hemisphere of Mars, Icarus, 169, 324340, doi:10.1016/j.icarus.2003.10.022.
  • Milliken, R. E. (2006), Estimating the water content of geologic materials using near-infrared reflectance spectroscopy: Applications to laboratory and spacecraft data, PhD diss., Brown Univ., Providence, R. I.
  • Milliken, R. E., J. F. Mustard, F. Poulet, D. Jouglet, J.-P. Bibring, B. Gondet, and Y. Langevin (2007), Hydration state of the Martian surface as seen by Mars Express OMEGA: 2. H2O content of the surface, J. Geophys. Res., 112, E08S07, doi:10.1029/2006JE002853.
  • Morris, R. V., D. C. Golden, J. F. Bell III, H. V. J. Lauer, and J. B. Adams (1993), Pigmenting agents in Martian soils: Inferences from spectral, Mössbauer, and magnetic properties of nanophase and other iron oxides in Hawaiian palagonitic soil PN-9, Geochim. Cosmochim. Acta, 57, 45974609.
  • Morris, R. V., D. C. Golden, and J. F. Bell III (1997), Low-temperature reflectivity spectra of red hematite and the color of Mars, J. Geophys. Res., 102(E4), 91259133, doi:10.1029/96JE03993.
  • Morris, R. V., et al. (2006), Mössbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity's journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits, J. Geophys. Res., 111, E12S15, doi:10.1029/2006JE002791.
  • Mustard, J. F., F. Poulet, A. Gendrin, J.-P. Bibring, Y. Langevin, B. Gondet, N. Mangold, G. Bellucci, and F. Altieri (2005), Olivine and pyroxene diversity in the crust of Mars, Science, 307, 15941597, doi:10.1126/science.1109098.
  • Pelkey, S. M., et al. (2007), CRISM multispectral summary products: Parameterizing mineral diversity on Mars from reflectance, J. Geophys. Res., 112, E08S14, doi:10.1029/2006JE002831.
  • Poulet, F., J.-P. Bibring, J. F. Mustard, A. Gendrin, N. Mangold, Y. Langevin, R. E. Arvidson, B. Gondet, and C. Gomez (2005), Phyllosilicates on Mars and implications for the early Mars history, Nature, 438, 623627, doi:10.1038/nature04274.
  • Putzig, N. E., and M. T. Mellon (2007), Apparent thermal inertia and surface heterogeneity on Mars, Icarus, 191, 6894, doi:10.1016/j.icarus.2007.05.013.
  • Raiswell, R., L. G. Benning, L. Davidson, M. Tranter, and S. Tulaczyk (2009), Schwertmannite in wet, acid, and oxic microenvironments beneath polar and polythermal glaciers, Geology, 37, 431434, doi:10.1130/G25350A.1.
  • Savitzky, A., and M. J. E. Golay (1964), Smoothing and differentiation of data by simplified least squares procedures, Anal. Chem., 36(8), 16271639, doi:10.1021/ac60214a047.
  • Schwertmann, U., and L. Carlson (2005), The pH-dependent transformation of schwertmannite to goethite at 25°C, Clay Miner., 40, 6366, doi:10.1180/0009855054010155.
  • Smith, D. E., et al. (1999), The global topography of Mars and implications for surface evolution, Science, 284, 14951503, doi:10.1126/science.284.5419.1495.
  • Smith, M. D. (2002), The annual cycle of water vapor on Mars as observed by the Thermal Emission Spectrometer, J. Geophys. Res., 107(E11), 5115, doi:10.1029/2001JE001522.
  • Smith, M. D. (2004), Interannual variability in TES atmospheric observations of Mars during 1999–2003, Icarus, 167, 148165, dio:10.1016/j.icarus.2003.09.010.
  • Stamnes, K., S. Tsay, W. Wiscombe, and K. Jayaweera (1988), Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media, Appl. Opt., 27, 25022509.
  • Tosca, N. J., S. M. McLennan, M. D. Dyar, E. C. Sklute, and F. M. Michel (2008), Fe oxidation processes at Meridiani Planum and implications for secondary Fe mineralogy on Mars, J. Geophys. Res., 113, E05005, doi:10.1029/2007JE003019.
  • Vincendon, M., Y. Langevin, F. Poulet, J.-P. Bibring, and B. Gondet (2007), Recovery of surface reflectance spectra and evaluation of the optical depth of aerosols in the near-IR using a Monte Carlo approach: Application to the OMEGA observations of high-latitude regions of Mars, J. Geophys. Res., 112, E08S13, doi:10.1029/2006JE002845.
  • Wang, A., J. J. Freeman, I.-M. Chou, and B. L. Jolliff (2011), Stability of Mg-sulfates at −10 °C and the rates of dehydration/rehydration processes under conditions relevant to Mars, J. Geophys. Res., 116, E12006, doi:10.1029/2011JE003818.
  • Warren, S. G. (1984), Optical constants of ice from the ultraviolet to the microwave, Appl. Opt., 23, 12061225, doi:10.1364/AO.23.001206.
  • Wiseman, S. (2009), Spectral and stratigraphic mapping of hydrated sulfate and phyllosilicate-bearing deposits: Implications for the aqueous history of Sinus Meridiani, Mars, Ph.D. diss., Washington Univ. in St. Louis, St. Louis, Mo.
  • Wolff, M. J., et al. (2007), Some studies of Martian aerosol properties using MRO/CRISM and MRO/Marci, in Seventh International Conference on Mars, July 9–13, 2007, Pasadena CA[CD-ROM],LPI Contrib., 1353, Abstract 3121.
  • Wolff, M. J., M. D. Smith, R. T. Clancy, R. E. Arvidson, M. Kahre, F. P. Seelos IV, S. L. Murchie, H. Savijärvi, and the CRISM Science Team (2009), Wavelength dependence of dust aerosol single scattering albedo as observed by CRISM, J. Geophys. Res., 114, E00D04, doi:10.1029/2009JE003350.
  • Zuber, M. T., D. E. Smith, S. C. Solomon, D. O. Muhleman, J. W. Head, J. B. Garvin, J. B. Abshire, and J. L. Bufton (1992), The Mars Observer Laser Altimeter investigation, J. Geophys. Res., 97(E5), 77817797, doi:10.1029/92JE00341.