SEARCH

SEARCH BY CITATION

References

  • Abtahi, A. A., A. B. Kahle, E. A. Abbott, A. R. Gillespie, D. Sabol, G. Yamada, and D. Pieri (2002), Emissivity changes in basalt cooling after eruption from Pu'u O'o, Kilauea, Hawaii, Eos Trans. AGU, 83(47), Fall Meet. Suppl., Abstract V71A-1263.
  • Armstrong, J. C., (2010), Distribution of impact locations and velocities of Earth meteorites on the Moon, Earth, Moon, Planets, 107, 4354.
  • Armstrong, J. C., L. E. Wells, and G. Gonzales (2002), Rummaging through the Earth's attic for remains of ancient life, Icarus, 160, 183196.
  • Ashley, J. W., M. S. Robinson, A. K. Boyd, R. V. Wagner, E. J. Speyerer, B. R. Hawke, H. Hiesinger, C. H. van der Bogert, K. N. Burnes, and H. Sato (2012), LROC imaging of thin layering in lunar mare deposits, Lunar Planet. Sci. Conf., 43, Abstract #2115.
  • Asimow P. D., and M. S. Ghiorso (1998), Algorithmic modifications extending MELTS to calculate subsolidus phase relations, Amer. Mineral., 83, 11271131.
  • Blumberg, W., and E.-U. Schlünder (1995), Thermal conductivity of packed beds consisting of porous particles wetted with binary mixtures, Chem. Eng. and Processing: Process Intensification, 34(3), 339346.
  • Burgi, P., M. Caillet, and S. Haefeli (2002), Field temperature measurements at Erta Ale lava lake, Ethiopia, Bull. Volcanol., 64, 472485.
  • Büttner, R., B. Zimanowski, J. Blumm, and L. Hagemann, (1998), Thermal conductivity of a volcanic rock material (olivine-melilitite) in the temperature range between 288 and 1470 K, J. Volcanol. Geotherm. Res., 80, 293302.
  • Carrier, W. D., G. R. Olhoeft, and W. W. Mendell (1991), Physical properties of the lunar surface, in The Lunar Sourcebook: A User's Guide to the Moon, edited by G. H. Heiken, D. T. Vaniman, and B. M. French, pp. 475594, Cambridge University Press, Cambridge.
  • Carslaw, H. S., and J. C. Jaeger (1986), Conduction of Heat in Solids, 510 pp., Oxford University Press, Oxford.
  • Čermàk, V., H.-G. Huckenholz, L. Rybach, R. Schmid, J. R. Schopper, M. Schuch, D. Stöffler, and J. Wohlenberg (Eds.) (1982), Physical Properties of Rocks, Numerical Data and Functional Relationships in Science and Technology, 1a, pp. 341371, Springer-Verlag, New York.
  • Crawford, I. A., S. A. Fagents, and K. H. Joy, (2007), Full Moon exploration, Astron. Geophys., 48, 3.183.21.
  • Crawford, I. A., E. C. Baldwin, E. A. Taylor, J. A. Bailey, and K. Tsembelis, (2008), On the survivability and detectability of terrestrial meteorites on the Moon, Astrobiol., 8, 242252.
  • Crawford, I. A., S. A. Fagents, K. H. Joy, and M. E. Rumpf (2010), Lunar palaeoregolith deposits as recorders of the galactic environment of the Solar System and implications for astrobiology, Earth, Moon, Planets, 107, 7585.
  • Cremers, C. J., R. C. Birkebak, and J. P. Dawson (1970), Thermal conductivity of fines from Apollo 11, Proc. Apollo 11 Lunar Sci. Conf., 3, 20452050.
  • Crisp, J., A. B. Kahle, and E. A. Abbott (1990), Thermal infrared spectral character of Hawaiian basaltic glasses, J. Geophys. Res., 95, 21,65721,669.
  • Crozaz, G., U. Haack, M. Hair, M. Maurette, R. Walker, and D. Woolum (1970), Nuclear track studies of ancient solar radiations and dynamic lunar surface processes, Proc. Apollo 11 Lun. Sci. Conf., 3, 20512080.
  • Dalton, C., and E. Hoffman (1972), Conceptual Design of a Lunar Colony, NASA Grant Rpt. NGT 44–005–1 14, Washington, D. C., 505.
  • Duraud, J. P., Y. Langevin, M. Maurette, G. Comstock, and A. L. Burlingame (1975), The simulated depth history of dust grains in the lunar regolith, Proc. Lun. Sci. Conf., 6th, 23972415.
  • Eugster, O. (2003), Cosmic-ray exposure ages of meteorites and lunar rocks and their significance, Chemie der Erde, 63, 330.
  • Fagents, S. A., and R. Greeley (2001), Factors influencing lava-substrate heat transfer and implications for thermomechanical erosion, Bull. Volcanol., 62, 519532.
  • Fagents, S. A., R. Greeley, R. J. Sullivan, R. T. Pappalardo, and L. M. Prockter (2000), Cryomagmatic mechanisms for the formation of Rhadamanthys Linea, triple band margins, and other low albedo features on Europa, Icarus, 144, 5488.
  • Fagents, S. A., M. E. Rumpf, I. A. Crawford, and K. H. Joy (2010), Preservation potential of implanted solar wind volatiles in lunar palaeoregolith deposits buried by lava flows, Icarus, 207, 595604.
  • Fegley, B., and T. D. Swindle (1993), Lunar volatiles: Implications for lunar resource utilization, in Resources of Near-Earth Space, edited by J. Lewis, M. S. Matthews, and M. L. Guerrieri, pp. 367426, University of Arizona Press, Tuscon.
  • Flynn, L. P., P. J. Mouginis-Mark, J. C. Gradie, and P. G. Lucey (1993), Radiative temperature measurements at Kupaianaha Lava Lake, Kilauea Volcano, Hawaii, J. Geophys. Res., 98, 64616476.
  • Fountain, J. A., and E. A. West (1970), Thermal conductivity of particulate basalt as a function of density in simulated lunar and Martian environments, J. Geophys. Res., 75, 40634069.
  • Ghiorso, M. S., and R. O. Sack (1995), Chemical mass transfer in magmatic processes. IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures, Cont. Mineral. Petrol., 119, 197212.
  • Gibson, E. K., and S. M. Johnson (1971), Thermal analysis—inorganic gas release studies of lunar samples, Proc. 2nd Lun. Sci. Conf., 13511366.
  • Gifford, A. N., and F. El-Baz, (1981), Thicknesses of mare flow fronts, Moon Plan., 24, 391398.
  • Goswami, J. N. (2001), Interactions of energetic particles and dust grains with asteroidal surfaces, Earth, Planets, Space, 53, 10291037.
  • Gualda, G. A. R., M. S. Ghiorso, R. V. Lemons, and T. L. Carley (2012), Rhyolite-MELTS: A modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems, J. Petrol., 53(5), 875890.
  • Haskin, L., and P. H. Warren (1991), Lunar chemistry, in The Lunar Sourcebook: A User's Guide to the Moon, edited by G. H. Heiken, D. T. Vaniman, and B. M. French, pp. 357474, Cambridge University Press, Cambridge.
  • Hemingway, B. S., and R. A. Robie (1973), Specific heats of lunar basalt, 15555, and soils 15301 and 60601 from 90 to 350 K, Proc. Lun. Sci. Conf., 3rd, 355356.
  • Hemingway, B. S., R. A. Robie, and W. H. Wilson (1973), Specific heats of lunar soils, basalt, and breccias from the Apollo 14, 15, and 16 landing sites, between 90 and 350°K, Proc. 4th Lun. Sci. Conf., Geochim. Cosmochim. Acta, 3, 24812487.
  • Hiesinger, H., and J. W. Head (2006), New views of lunar geoscience: An introduction and overview, in new views of the Moon, Rev. Mineral Geochem., 60, 181.
  • Hiesinger, H., R. Jaumann, G. Neukum, and J. W. Head (2000), Age of mare basalts on the lunar nearside, J. Geophys. Res., 105, 29,23929,275.
  • Hiesinger, H., J. W. Head, U. Wolf, R. Jaumann, and G. Neukum (2002), Lunar mare basalt flow units: Thicknesses determined from crater size-frequency distributions, Geophys. Res. Lett., 29, doi:10.1029/2002Gl014847.
  • Hiesinger, H., J. W. Head, U. Wolf, R. Jaumann, and G. Neukum (2003), Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Nubium, Mare Cognitum, and Mare Insularum, J. Geophys. Res., 108(5065), doi:10.1029/2002JE001985.
  • Horai, K., G. Simmons, H. Kanamori, D. Wones (1970), Thermal diffusivity, conductivity and thermal inertia of Apollo 11 lunar material, Proc. Apollo 11 Lun. Sci. Conf., 3, 22432249.
  • Hörz, F., R. Grieve, G. Heiken, P. Spudis, and A. Binder (1991), Lunar surface processes, in The Lunar Sourcebook: A User's Guide to the Moon, edited by G. H. Heiken, D. T. Vaniman, and B. M. French, pp. 61120, Cambridge Univ. Press, Cambridge.
  • Huetter, E. S., N. I. Koemle, G. Kargl, and E. Kaufmann (2008), Determination of effective thermal conductivity of granular materials under varying pressure conditions, J. Geophys. Res., 113, E12004, doi:10.1029/2008JE003085.
  • Joy K. H., D. A. Kring, D. D. Bogard, D. S. McKay, and M. E. Zolensky (2011), Re-examination of the formation ages of Apollo 16 regolith breccias, Geochim. Cosmochim. Acta, 75, 72087225.
  • Joy K. H., M. E. Zolensky, K. Nagashima, G. R. Huss, D. S. McKay, D. K. Ross, and D. A. Kring (2012), Direct detection of projectile relics from the end of the lunar basin-forming epoch. Science 336, 14261429. doi 10.1126/science.1219633.
  • Keil K., T.E. Prinz, and T.E. Bunch (1971), Mineralogy, petrology and chemistry of some Apollo 12 samples, Proc. 2nd Lunar Sci. Conf., 319341.
  • Keszthelyi, L. (1994), Calculated effect of vesicles on the thermal properties of cooling basaltic lava flows, J. Volcanol. Geotherm. Res., 63, 257266.
  • Keszthelyi, L. (1995), A preliminary thermal budget for lava tubes on the Earth and planets, J. Geophys. Res., 100, (B10), 20,41120,420.
  • Keszthelyi, L., and R. Denlinger (1996), The initial cooling of pahoehoe flow lobes, Bull. Volcanol., 58, 518.
  • Korotev, R. L. (1997), Some things we can infer from the Moon from the composition of the Apollo 16 regolith, Meteorit. Planet. Sci., 32, 447478.
  • Kramer, G. Y (2010), Characterizing bedrock lithologies using small crater rims and ejecta probing (SCREP), Adv. Space Res., 45, 12571276.
  • Lange, R. A., and A. Navrotsky (1992), Heat capacities of Fe2O3-bearing silicate liquids, Cont. Mineral. Petrol., 110, 311320.
  • Lange, R. A., K. V. Cashman, and A. Navrotsky (1994), Direct measurements of latent heat during crystallization and melting of a ugandite and an olive basalt, Cont. Mineral. Petrol., 118, 169181.
  • Langseth, M. G., and S. J. Keihm (1977), In situ measurements of lunar heat flow, Sov.-Amer. Conf. on Geochem. of the Moon and Planets 1, pp. 293293, NASA SP-370.
  • Langseth, M. G., S. J. Keihm, and K. Peters (1976), Revised lunar heat-flow values, Proc. Lun. Planet. Sci. Conf., 7th, 31433171.
  • Lucey, P. G., R. L. Korotev, J. J. Gillis, L. A. Taylor, D. Lawrence, B. A. Campbell, R. Elphic, B. Feldmann, L. L. Hood, D. Hunten, M. Mendillo, S. Noble, J. J. Papike, R. C. Reedy, S. Lawson, T. Prettyman, O. Gasnault, and S. Maurice (2006), Understanding the lunar surface and space-Moon interaction, in new views of the Moon, Rev. Mineral. Geochem, 60, pp. 83219.
  • McEwen, A. S., B. S. Preblich, E. P. Turtle, N. A. Artemieva, M. P. Golombek, M. Hurst, R. L. Kirk, D. M. Burr, and P. R. Christensen (2005), The rayed crater Zunil and interpretations of small impact craters on Mars, Icarus, 176, 351381.
  • McKay, D. S. (2009), Do lunar pyroclastic deposits contain the secrets of the Solar System?, Paper presented at Lunar Reconnaissance Orbiter Science Targeting Meeting, Tempe, Arizona, pp. 7778.
  • McKay, D. S., D. D. Bogard, R. V. Morris, R. L. Korotev, S. J. Wentworth, and P. Johnson (1989), Apollo 15 regolith breccias: Window to a KREEP regolith, Proc. 19th Lun. Planet. Sci. Conf., 1941.
  • McKay, D. S., G. Heiken, A. Basu, G. Blanford, S. Simon, R. Reedy, B. M. French, and J. Papike (1991), The lunar regolith, in The Lunar Source Book: A User's Guide to the Moon, edited by G. H. Heiken, D. T. Vaniman, and B. M. French, pp. 285356, Cambridge University Press, Cambridge.
  • Murase, R., and A. T. McBirney (1970), Viscosity of lunar lavas, Science, 167, 14911492.
  • Murase, R., and A. T. McBirney (1973), Properties of some common igneous rocks and melts at high temperatures, Geol. Soc. Amer. Bull., 84, 35623592.
  • NRC (2007), The scientific context for exploration of the Moon, National Research Council, Washington DC (http://www.nap.edu/catalog.php?record_id=11954).
  • Ono, T., A. Kumamoto, H. Nakagawa, Y. Yamaguchi, S. Oshigami, A. Yamaji, T. Kobayashi, Y. Kasahara, and H. Oya (2009), Lunar Radar Sounder observations of subsurface layers under the nearside maria of the Moon, Science, 323, 9092.
  • Ozima, M., K. Seki, N. Terada, Y. N. Miura, F. A. Podosek, and M. Shinagawa (2005), Terrestrial nitrogen and noble gases in lunar soils, Nature, 436, 655659.
  • Ozima, M., Q.-Z. Yin, F. A. Podosek, and Y.N. Miura (2008), Toward prescription for approach from terrestrial noble gas and light element records in lunar soils understanding early Earth evolution, Proc. Nat. Acad. Sci., 105, 17,6517,658.
  • Papike G. Ryder, and C. K. Shearer (1998), Lunar samples, in Planetary Materials, edited by J. J. Papike, pp. 5-15-234, Mineralogical Society of America. Washington D.C.
  • Patrick, M. R., J. Dehn, and K. Dean (2004), Numerical modeling of lava flow cooling applied to the 1997 Okmok eruption: Approach and analysis, J. Geophys. Res., 109, B03202, doi:10.1029/2003JB002537.
  • Pieri, D. C., L. S. Glaze, and M. J. Abrams (1990), Thermal radiance observations of an active lava flow during the June 1984 eruption of Mount Etna, Geology, 18, 10181022.
  • Pinkerton, H., M. James, and A. Jones (2002), Surface temperature measurements of active flows on Kilauea volcano, Hawaii, J. Volcanol. Geotherm. Res., 113, 159176.
  • Presley, M. A., and P. R. Christensen (1997a), Thermal conductivity measurements of particulate materials 1. Review, J. Geophys. Res., 102, 65386550.
  • Presley, M. A., and P. R. Christensen (1997b), Thermal conductivity measurements of particulate materials 2. Results, J. Geophys. Res., 102, 65516566.
  • Ramsey, M. S., and R. J. Lee (2011), Thermal emissivity measurements of molten silicates: Implications for lava flow emplacement and hazards, IUGG XXV General Assembly Abstracts and Programs, abs. #4184.
  • Rhodes J. M., and N. J. Hubbard (1973), Chemistry, classification, and petrogenesis of Apollo 15 mare basalts, Proc. Lun. Sci. Conf., 4th, 11271148.
  • Robie, R. A., B. S. Hemingway, and W. H. Wilson (1970), Specific heats of lunar surface materials from 90 to 350 K, Proc. Lun. Sci. Conf., 2nd, 23612367.
  • Robinson, M. S., et al. (2010), Lunar Reconnaissance Orbiter Camera (LROC) instrument overview, Space Sci Rev, 150, 81-124, doi:10.1007/s11214-010-9634-2.
  • Robinson, M. S., J. W. Ashley, A. K. Boyd, R. V. Wagner, E. J. Speyerer, B. R. Hawke, H. Hiesinger, and C. H. van der Bogert (2012), Confirmation of sublunarean voids and thin layering in mare deposits, Planet. Space Sci., 69, 1827.
  • Schotte, W. (1960), Thermal conductivity of packed beds, AIChE J., 6, 6367.
  • Simoneit, B. R., P. C. Christiansen, and A. L. Burlingame (1973), Volatile element chemistry of selected lunar, meteoritic, and terrestrial samples, Proc. Lun. Sci. Conf., 4th, 16351650.
  • Smales A. A., D. Mapper, M. S. W. Webb, R. K. Webster, J. D. Wilson, and J. S. Hislop (1971), Elemental composition of lunar surface material (part 2), Proc. Lun. Sci. Conf., 2nd, 12531258.
  • Spudis, P. D. (1996), The Once and Future Moon, Smithsonian Institution Press, Washington D.C.
  • Spudis, P. D., and G. J. Taylor (2009), A major KREEP basalt–mare basalt unconformity on the Moon, Lunar Planet. Sci. Conf., 40th, Abstract #1039.
  • Taylor, G. J., P. H. Warren, G. C. Ryder, J. W. Delano, C. M. Pieters, and G. W. Lofgren (1991), Lunar rocks, in The Lunar Sourcebook: A User's Guide to the Moon, edited by G. H. Heiken, D. T. Vaniman, and B. M. French, pp. 183284, Cambridge University Press, Cambridge.
  • Touloukian, Y. S., W. R. Judd, and R. F. Roy (1981), Physical Properties of Rocks and Minerals, Data Series on Material Properties, 12. McGraw-Hill, New York.
  • Touloukian, Y. S., W. R. Judd, and R. F. Roy (1989), Physical Properties of Rocks and Minerals, Data Series on Material Properties, Group II, Properties of Special Materials, II-2, Hemisphere Pub. Corp., New York.
  • Vaniman, D. T., R. Reedy, G. H. Heiken, G. Olhoeft, and W. W. Mendell (1991), The lunar environment, in The Lunar Sourcebook: A User's Guide to the Moon, edited by G. H. Heiken, D. T. Vaniman, and B. M. French, pp. 2760, Cambridge University Press, Cambridge.
  • Watson, K. (1964), The thermal conductivity measurements of selected silicate powders in vacuum from 150 to 350 K, PhD thesis, Calif. Inst. Tech., Pasadena, CA.
  • Wechsler, A. E., and P. E. Glaser (1965), Pressure effects on postulated lunar materials, Icarus, 4, 335352.
  • Wechsler, A. E., P. E. Glaser, and J. A. Fountain (1972), Thermal properties of granulated materials, in Thermal Characteristics of the Moon, edited by J. W. Lucas, pp. 215241, MIT Press, Cambridge, Mass.
  • Weider, S. Z., I. A. Crawford, and K. H. Joy (2010), Individual lava flow thicknesses in Oceanus Procellarum and Mare Serenitatis determined from Clementine multi-spectral data, Icarus, 209, 323336.
  • Wieczorek, M. A., B. L. Jolliff, A. Khan, M. E. Pritchard, B. P. Weiss, J. G. Williams, L. L. Hood, K. Righter, C. R. Neal, C. K. Shearer, I. S. McCallum, S. Tompkins, B. R. Hawke, C. Peterson, J. J. Gillis, and B. Bussey (2006), The constitution and structure of the lunar interior, in new views of the Moon, Rev. Mineral. Geochem., 60, pp. 221364.
  • Wieler, R., K. Kehm, A. P. Meshik, and C. M. Hohenberg (1996), Secular changes in the xenon and krypton abundances in the solar wind recorded in single lunar grains, Nature, 384, 4649.
  • Wilhelms, D. (1987), Geologic history of the Moon, U.S. Geol. Surv. Prof. Paper 1348.
  • Williams, D. A., S. A. Fagents, and R. Greeley (2000), A reassessment of the emplacement and erosional potential of turbulent, low-viscosity lavas on the Moon, J. Geophys. Res., 105, 20,18920,205.
  • Willis J. P., A. J. Erlank, J. J. Gurney, R. H. Theil, and L. H. Ahrens (1972), Major, minor, and trace element data for some Apollo 11, 12, 14, and 15 samples. Proc. Lun. Planet. Sci. Conf., 3rd., 12691273.
  • Yuan, Z.-G., and J. E. Kleinhenz (2011), Measurement of apparent thermal conductivity of JSC-1A under ambient pressure, 49th AIAA Aerospace Sciences Meeting, Orlando, FL.
  • Zanetti, M., H. Hiesinger, C. H. van der Bogert, and B. L. Jolliff (2011), Observation of stratified ejecta blocks at Aristarchus Crater, Lunar Planet. Sci. Conf., 42, Abstract #2262.
  • Zolensky M. E. (1997), Structural water in the Bench Crater chondrite returned from the Moon, Meteorit. Planet. Sci. 32, 1518.