SEARCH

SEARCH BY CITATION

Keywords:

  • glacier ice volume;
  • glacier inventory;
  • global assessment;
  • ice thickness distribution;
  • sea level rise;
  • water resources

[1] A new physically based approach for calculating glacier ice thickness distribution and volume is presented and applied to all glaciers and ice caps worldwide. Combining glacier outlines of the globally complete Randolph Glacier Inventory with terrain elevation models (Shuttle Radar Topography Mission/Advanced Spaceborne Thermal Emission and Reflection Radiometer), we use a simple dynamic model to obtain spatially distributed thickness of individual glaciers by inverting their surface topography. Results are validated against a comprehensive set of thickness observations for 300 glaciers from most glacierized regions of the world. For all mountain glaciers and ice caps outside of the Antarctic and Greenland ice sheets we find a total ice volume of 170 × 103 ± 21 × 103 km3, or 0.43 ± 0.06 m of potential sea level rise.