SEARCH

SEARCH BY CITATION

References

  • Abramowitz, M., and I. A. Stegun (1965), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover, New York.
  • Alù, A., and N. Engheta (2006), Erratum: “Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/or double-positive metamaterial layers” [J. Appl. Phys. 97, 094310 (2005)], J. Appl. Phys., 99(6), 069901, doi:10.1063/1.2185829.
  • Alù, A., and N. Engheta (2007), Three-dimensional nanotransmission lines at optical frequencies: A recipe for broadband negative-refraction optical metamaterials, Phys. Rev. B, 75(2), 024304, doi:10.1103/PhysRevB.75.024304.
  • Basilio, L. I., L. K. Warne, W. L. Langston, W. A. Johnson, and M. B. Sinclair (2011), A negative-index metamaterial design based on metal-core, dielectric shell resonators, paper presented at 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), IEEE, Spokane, Wash., 3–8 July.
  • Benenson, L. S. (1971), Dispersion equations of periodic structures, Radio Eng. Electron. Phys. Engl. Transl., 16(8), 12801290.
  • Berdel, K., J. G. Rivas, P. H. Bolivar, P. deMaagt, and H. Kurz (2005), Temperature dependence of the permittivity and loss tangent of high-permittivity materials at terahertz frequencies, IEEE Trans. Microwave Theory Tech., 53(4), 12661271, doi:10.1109/TMTT.2005.845752.
  • Bohren, C. F., and D. R. Huffman (1983), Absorption and Scattering of Light by Small Particles, John Wiley, New York.
  • Boughriet, A. H., C. Legrand, and A. Chapoton (1997), Noniterative stable transmission/reflection method for low-loss material complex permittivity determination, IEEE Trans. Microwave Theory Tech., 45(1), 5257, doi:10.1109/22.552032.
  • Campione, S., M. Albani, and F. Capolino (2011a), Complex modes and near-zero permittivity in 3D arrays of plasmonic nanoshells: Loss compensation using gain, Opt. Mater. Express, 1(6), 10771089, doi:10.1364/OME.1.001077.
  • Campione, S., S. Steshenko, M. Albani, and F. Capolino (2011b), Complex modes and effective refractive index in 3D periodic arrays of plasmonic nanospheres, Opt. Express, 19(27), 26,02726,043, doi:10.1364/OE.19.026027.
  • Campione, S., S. Lannebère, A. Aradian, M. Albani, and F. Capolino (2012), Complex modes and artificial magnetism in three-dimensional periodic arrays of titanium dioxide microspheres at millimeter waves, J. Opt. Soc. Am. B Opt. Phys., 29(7), 16971706, doi:10.1364/JOSAB.29.001697.
  • Capolino, F. (Ed.) (2009), Metamaterials Handbook, CRC Press, Boca Raton, Fla.
  • Capolino, F., D. R. Wilton, and W. A. Johnson (2005), Efficient computation of the 2-D Green's function for 1-D periodic structures using the Ewald method, IEEE Trans. Antennas Propag., 53(9), 29772984, doi:10.1109/TAP.2005.854556.
  • Capolino, F., D. R. Wilton, and W. A. Johnson (2007), Efficient computation of the 3D Green's function for the Helmholtz operator for a linear array of point sources using the Ewald method, J. Comput. Phys., 223(1), 250261, doi:10.1016/j.jcp.2006.09.013.
  • Collin, R. E. (1960), Field Theory of Guided Waves, McGraw Hill, New York.
  • Ewald, P. P. (1921), The calculation of optical and electrostatic grid potential, Ann. Phys., 64(3), 253287.
  • Ham, F. S., and B. Segall (1961), Energy bands in periodic lattices - Green's function method, Phys. Rev., 124(6), 17861796, doi:10.1103/PhysRev.124.1786.
  • Ishimaru, A., L. Seung-Woo, Y. Kuga, and V. Jandhyala (2003), Generalized constitutive relations for metamaterials based on the quasi-static Lorentz theory, IEEE Trans. Antennas Propag., 51(10), 25502557, doi:10.1109/TAP.2003.817565.
  • Kustepeli, A., and A. Q. Martin (2000), On the splitting parameter in the Ewald method, IEEE Microw. Guided Wave Lett., 10(5), 168170, doi:10.1109/75.850366.
  • Lannebere, S. (2011), Étude théorique de métamatériaux formés de particules diélectriques résonantes dans la gamme submillimétrique: Magnétisme artificiel et indice de réfraction négatif, PhD thesis, Univ. Bordeaux 1, Bordeaux, France.
  • Lovat, G., P. Burghignoli, and R. Araneo (2008), Efficient evaluation of the 3-D periodic Green's function through the Ewald method, IEEE Trans. Microwave Theory Tech., 56(9), 20692075, doi:10.1109/TMTT.2008.2002232.
  • Mulholland, G. W., C. F. Bohren, and K. A. Fuller (1994), Light scattering by agglomerates - Coupled electric and magnetic dipole method, Langmuir, 10(8), 25332546, doi:10.1021/la00020a009.
  • Nicolson, A. M., and G. F. Ross (1970), Measurement of the intrinsic properties of materials by time-domain techniques, IEEE Trans. Instrum. Meas., 19(4), 377382, doi:10.1109/TIM.1970.4313932.
  • Palik, E. (1985), Handbook of Optical Constants of Solids, Academic, San Diego, Calif.
  • Park, M.-J., J. Park, and S. Nam (1998), Efficient calculation of the Green's function for the rectangular cavity, IEEE Microw. Guided Wave Lett., 8(3), 124126, doi:10.1109/75.661136.
  • Shore, R. A., and A. D. Yaghjian (2007), Traveling waves on two- and three-dimensional periodic arrays of lossless scatterers, Radio Sci., 42, RS6S21, doi:10.1029/2007RS003647.
  • Shore, R. A., and A. D. Yaghjian (2010), Complex waves on 1D, 2D, and 3D periodic arrays of lossy and lossless magnetodielectric spheres, Rep. AFRL-RY-HS-TR-2010-0019, Air Force Res. Lab., Hanscom AFB, Mass.
  • Shore, R., and A. D. Yaghjian (2012), Complex waves on periodic arrays of lossy and lossless permeable spheres. Part 1: Theory, Radio Sci., 47, RS2014, doi:10.1029/2011RS004859.
  • Sihvola, A. (1999), Electromagnetic Mixing Formulas and Applications, IET Publ., London, doi:10.1049/PBEW047E.
  • Sihvola, A. (2009), Mixing rules, in Theory and Phenomena of Metamaterials, edited by F. Capolino, chap. 9, CRC Press, Boca Raton, Fla., doi:10.1201/9781420054262.ch9.
  • Simovski, C. R. (2009), On the extraction of local material parameters of metamaterials from experimental or simulated data, in Theory and Phenomena of Metamaterials, edited by F. Capolino, chap. 11, CRC Press, Boca Raton, Fla., doi:10.1201/9781420054262.ch11.
  • Smith, D. R., S. Schultz, P. Markoscaron, and C. M. Soukoulis (2002), Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients, Phys. Rev. B, 65(19), 195104, doi:10.1103/PhysRevB.65.195104.
  • Steshenko, S., and F. Capolino (2009), Single dipole approximation for modeling collections of nanoscatterers, in Theory and Phenomena of Metamaterials, edited by F. Capolino, chap. 8, CRC Press, Boca Raton, Fla., doi:10.1201/9781420054262.ch8.
  • Stevanoviæ, I., and J. R. Mosig (2007), Periodic Green's function for skewed 3-D lattices using the Ewald transformation, Microwave Opt. Technol. Lett., 49(6), 13531357, doi:10.1002/mop.22429.
  • Weir, W. B. (1974), Automatic measurement of complex dielectric constant and permeability at microwave frequencies, Proc. IEEE, 62(1), 3336, doi:10.1109/PROC.1974.9382.
  • Wheeler, M. S., J. S. Aitchison, and M. Mojahedi (2005a), Magnetism and effective electromagnetic parameters from dielectric spheres, paper presented at Second IASTED International Conference on Antennas, Radar, and Wave Propagation, Int. Assoc. of Sci. and Technol. for Dev., Banff, Alberta, Canada, 9–21 July.
  • Wheeler, M. S., J. S. Aitchison, and M. Mojahedi (2005b), Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies, Phys. Rev. B, 72(19), 193103, doi:10.1103/PhysRevB.72.193103.
  • Yaghjian, A. D. (1980), Electric dyadic Green's functions in the source region, Proc. IEEE, 68(2), 248263, doi:10.1109/PROC.1980.11620.