SEARCH

SEARCH BY CITATION

References

  • Alt, H. W. (1980), Numerical solution of steady-state porous flow free boundary problems, Numer. Math., 31, 7398.
  • Baghbanan, A., and L. Jing (2007), Hydraulic properties of fractured rock masses with correlated fracture length and aperture, Int. J. Rock Mech. Min. Sci., 44(5), 704719.
  • Bathe, K. J., and M. R. Khoshgoftaar (1979), Finite element free surface seepage analysis without mesh iteration, Int. J. Numer. Anal. Methods Geomech., 3, 1322.
  • Berkowitz, B. (2002), Characterizing flow and transport in fractured geological media: A review, Adv. Water Resour., 25, 861884.
  • Borja, R. I., and S. S. Kishnani (1991), On the solution of elliptic free boundary problems via Newton's method, Comput. Methods Appl. Mech. Eng., 88, 341361.
  • Brezis, H., D. Kinderlehrer, and G. Stampacchia (1978), Sur une nouvelle formulation due probleme de l'ecoulement a travers une digue, C. R. Acad. Sci. Paris Ser. A, 287, 711714.
  • Cacas, M. C., E. Ledoux, G. de Marsily, B. Tillie, A. Barbreau, E. Durand, B. Feuga, and P. Peaudecerf (1990), Modeling fracture flow with a stochastic discrete fracture network: Calibration and validation: 1. The flow model, Water Resour. Res., 26(3), 479489.
  • Chen, Y. F., C. B. Zhou, and H. Zheng (2008), A numerical solution to seepage problems with complex drainage systems, Comput. Geotech., 35(3), 383393.
  • Dershowitz, W. S., and H. H. Einstein (1987), Three dimensional flow modeling in jointed rock masses, in Proceedings of the Sixth International Congress on Rock Mechanics, edited by G. Herget and S. Vongpaisal, vol. 1, pp. 8792, Rotterdam, Netherlands.
  • Desai, C. S., and G. C. Li (1983), A residual flow procedure and application for free surface flow in porous media, Adv. Water Resour., 6, 2735.
  • Hsieh, P. A., and S. P. Neuman (1985), Field determination of the three dimensional hydraulic conductivity tensor of anisotropic media: 1. Theory, Water Resour. Res., 21(11), 16551665.
  • Jackson, C. P., A. R. Hoch, and S. Todman (2000), Self-consistency of a heterogeneous continuum porous medium representation of a fractured medium, Water Resour. Res., 36(1), 189202.
  • Jing, L., Y. Ma, and Z. Fang (2001), Modeling of fluid flow and solid deformation for fractured rocks with discontinuous deformation analysis (DDA) method, Int. J. Rock Mech. Min. Sci., 38(3), 343355.
  • Kikuchi, N. (1977), An analysis of the variational inequalities of seepage flow by finite-element methods, Q. Appl. Math., 35, 149163.
  • Kinderlehrer, D., and G. Stampacchia (1980), An Introduction to Variational Inequalities and Their Applications, Academic, New York.
  • Lacy, S. J., and J. H. Prevost (1987), Flow through porous media: a procedure for locating the free surface, Int. J. Numer. Anal. Methods Geomech., 11, 585601.
  • Long, J. C. S., P. Gilmour, and P. A. Witherspoon (1985), A method for steady fluid flow in random three-dimensional networks of disc-shaped fractures, Water Resour. Res., 21(8), 11051115.
  • Min, K. B., L. Jing, and O. Stephansson (2004), Determining the equivalent permeability tensor for fractured rock masses using a stochastic REV approach: method and application to the field data from Sellafield, UK, Hydrogeol. J., 12(5), 497510.
  • Neuman, S. P. (1973), Saturated-unsaturated seepage by finite elements. J. Hydraul. Div., 99(12), 22332250.
  • Oda, M. (1985), Permeability tensor for discontinuous rock masses, Geotechnique, 35(4), 483495.
  • Oda, M. (1986), An equivalent continuum model for coupled stress and fluid flow analysis in jointed rock masses, Water Resour. Res., 22(13), 18451856.
  • Oden, J. T., and N. Kikuchi (1980), Recent advances: Theory of variational inequalities with applications to problems of flow through porous media, Int. J. Eng. Sci., 18, 11731284.
  • Reinhard, D. (2005), Graph Theory, 3rd ed., pp. 5556, Springer, Berlin.
  • Snow, D. T. (1965), A parallel plate model of fractured permeable media, Ph.D. dissertation, Univ. of Calif., Berkeley, Calif.
  • Snow, D. T. (1969), Anisotropic permeability of fractured media, Water Resour. Res., 5(6), 12731289.
  • Tsang, C. F., O. Stephansson, F. Kautsky, and L. Jing (2004), Coupled THM processes in geological systems and the DECOVALEX project, in Coupled Thermo-Hydro-Mechanical Processes in Geo-Systems: Fundamentals, Modeling, Experiments & Applications, edited by O. Stephansson, J. A. Hudson, and L. Jing, pp. 316, Elsevier, Oxford.
  • Wang, E. Z. (1993), Seepage calculation method in fissure networks on vertical section, Hydrogeol. Eng. Geol., 20(4): 2729.
  • Westbrook, D. R. (1985), Analysis of inequalities and residual flow procedures and an iterative scheme for free surface seepage, Int. J. Numer. Methods Eng., 21, 17911802.
  • Wilson, C. R., and P. A. Witherspoon (1974), Steady state flow in rigid networks of fractures, Water Resour. Res., 10(2), 328335.
  • Witherspoon, P. A., J. S. Y. Wang, K. Iwai, and J. E. Gale (1980), Validity of cubic law for fluid flow in a deformable rock fracture, Water Resour. Res., 16, 10161024.
  • Zhang, Y. T. (1999), Water pressure of high rock slope and the permanent shiplock, in Deformation and Stability of High Rock Slope, edited by Y. T. Zhang and W. Y. Zhou, p. 76, China Water Power Press, Beijing.
  • Zhang, Y. T., P. Chen, and L. Wang (1988), Initial flow method for seepage analysis with free surface, J. Hydraul. Eng., 8(1), 1826.
  • Zheng, H., D. F. Liu, C. F. Lee, and L. G. Tham (2005), A new formulation of Signorini's type for seepage problems with free surfaces, Int. J. Numer. Methods Eng., 64, 116.
  • Zhou, C. B., W. L. Xiong, and Y. G. Liang (1996), A new method for unconfined seepage field, J. Hydrodyn., Ser. A, 11(5), 528534.