SEARCH

SEARCH BY CITATION

References

  • Abbaspour, K. C., J.Yang, I.Maximov, R.Siber, K.Bogner, J.Mieleitner, J.Zobrist, and R.Srinivasan (2007), Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT, J. Hydrol., 333(2–4), 413430.
  • Almendinger, J. E., and J. M.Ulrich (2010), Constructing a SWAT model of the Sunrise River watershed, eastern Minnesota, St. Croix Watershed Research Station, Marine on St. Croix, MN. [Available at http://www.smm.org/static/scwrs/tapwaters_sunrise.pdf.]
  • Andrieu, C., N.deFreitas, A.Doucet, and M. I.Jordan (2003), An introduction to MCMC for machine learning, Mach. Learning, 50, 543.
  • Arulampalam, M. S., S.Maskell, N.Gordon, and T.Clapp (2002), A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking, IEEE Trans. Signal Process., 50, 174188.
  • Avigad, G., E.Eisenstadt, and A.Goldvard (2010), Pareto layer: Its formulation and search by way of evolutionary multi-objective optimization. Eng. Opt., 42(5), 453470.
  • Babendreier, J. E., and K. J.Castleton (2005), Investigating uncertainty and sensitivity in integrated, multimedia environmental models: Tools for FRAMES-3MRA, Environ. Model. Software, 20(8), 10431055.
  • Bahremand, A., F.DeSmedt, J.Corluy, Y. B.Liu, J.Poorova, L.Velcicka, and E.Kunikova (2007), WetSpa model application for assessing reforestation impacts on floods in Margecany-Hornad Watershed, Slovakia, Water Res. Manage., 21(8), 13731391.
  • Baker, D. B., R. P.Richards, T. T.Loftus, and J. W.Kramer (2004), A new flashiness index: Characteristics and applications to midwestern rivers and streams, J. Am. Water Resour. Assoc., 40(2), 503522.
  • Beaumont, M. A. (2010), Approximate Bayesian computation in evolution and ecology, Annu. Rev. Ecol. Syst., 41, 379406.
  • Beven, K. (1993), Prophecy, reality and uncertainty in distributed hydrologic modeling, Adv. Water Resour., 16, 4151.
  • Beven, K. (2006), A manifesto for the equifinality thesis, J. Hydrol., 320(1–2), 1836.
  • Beven, K., and A.Binley (1992), The future of distributed models—Model calibration and uncertainty prediction, Hydrol. Processes, 6(3), 279298.
  • Bigiarni, M. Z. (2010), R Package ‘hydroGOF’: Goodness-of-fit functions for comparison of simulated and observed hydrological time series. [Available at http://cran.r-project.org/web/packages/hydroGOF.]
  • Bosch, D. D., J. G.Arnold, M.Volk, and P. M.Allen (2010), Simulation of a low-gradient coastal plain watershed using the SWAT landscape model. Trans. ASABE, 53(5), 14451456.
  • Easton, Z. M., D. R.Fuka, M. T.Walter, D. M.Cowan, E. M.Schneiderman, and T. S.Steenhuis (2008), Re-conceptualizing the soil and water assessment (SWAT) model to predict runoff from variable source areas, J. Hydrol., 348, 279291.
  • Easton, Z. M., D. R.Fuka, E. D.White, A. S.Collick, B. B.Ashagre, M.McCartney, S. B.Awulachew, A. A.Ahmed, and T. S.Steenhuis (2010), A multi basin SWAT model analysis of runoff and sedimentation in the Blue Nile, Ethiopia, Hydrol. Earth Syst. Sci., 14, 18271841, doi:10.5194/hess-14-1827-2010.
  • Eckhardt, K. (2008), A comparison of baseflow indices, which were calculated with seven different baseflow separation methods, J. Hydrol., 352(1–2), 168173.
  • Efstratiadis, A., and D.Koutsoyiannis (2010), One decade of multi-objective calibration approaches in hydrological modelling: A review, Hydrol. Sci. J., 55(1), 5878.
  • Ewen, J. (2011), Hydrograph matching method for measuring model performance, J. Hydrol., 408(1–2), 178187.
  • Fenicia, F., H. H. G.Savenije, P.Matgen, and L.Pfister (2007), A comparison of alternative multiobjective calibration strategies for hydrological modeling, Water Resour. Res., 43(3), W03434, doi:10.1029/2006WR005098.
  • Ficici, S. G. (2001), Pareto optimality in coevolutionary learning, Proceedings of Advances in Artificial Life: 6th European Conference, ECAL, Prague, Czech Republic, 10–14 September.
  • Fry, J., G.Xian, S.Jin, J.Dewitz, C.Homer, L.Yang, C.Barnes, N.Herold, and J.Wickham (2011), Completion of the 2006 National Land Cover Database for the conterminous United States, Photogram. Eng. Remote Sens., 77(9), 858864.
  • Gao, Y. X., R. M.Vogel, C. N.Kroll, N. L.Poff, and J. D.Olden (2009), Development of representative indicators of hydrologic alteration, J. Hydrol., 374(1–2), 136147.
  • Goldberg, D. E. (1989), Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Reading, MA.
  • Grimm, V., E.Revilla, U.Berger, F.Jeltsch, W. M.Mooji, S. F.Railsback, H. H.Thulke, J.Weiner, T.Wiegand, and D. L.DeAngelis (2005), Pattern-oriented modeling of agent-based complex systems: Lessons from ecology, Science, 310, 987991.
  • Gupta, H. V., S.Sorooshian, and P. O.Yapo (1998), Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information, Water Resour. Res., 34(4), 751763.
  • Gupta, H. V., H.Kling, K. K.Yilmaz, and G. F.Martinez (2009), Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling, J. Hydrol., 377(1–2), 8091.
  • Hartig, F., J. M.Calabrese, B.Reineking, T.Wiegand, and A.Huth (2011), Statistical inference for stochastic models—Theory and application, Ecol. Lett., 14, 816827.
  • Klemes, V. (1986), Operational testing of hydrological simulation models, Hydrol. Sci. J., 31(1), 1324.
  • Krause, P. (2005), Comparison of different efficiency criteria for hydrological model assessment, Adv. Geosci., 5(89), 8997.
  • Legates, D. R., and G. J.McCabe (1999), Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation, Water Resour. Res., 35(1), 233241.
  • Levesque, E., F.Anctil, A.vanGrievensen, and N.Beauchamp (2008), Evaluation of streamflow simulations by SWAT model for two small watersheds under snowmelt and rainfall, Hydrol. Sci. J., 53(5), 961976.
  • Lindström, G. (1997), A simple automatic calibration routine for the HBV model, Nord. Hydrol., 28(3), 153168.
  • Looper, J. P., B. E.Vieux, and M. A.Moreno (2012), Assessing the impacts of precipitation bias on distributed hydrologic model calibration and prediction accuracy, J. Hydrol., 418–419, 110122.
  • Madsen, H. (2000), Automatic calibration of a conceptual rainfall-runoff model using multiple objectives, J. Hydrol., 235(3–4), 276288.
  • Madsen, H., G.Wilson, and H. C.Ammentrop (2002), Comparison of different automated strategies for calibration of rainfall-runoff models, J. Hydrol., 261(1–4), 4859.
  • Matott, L. S., J. E.Babendreier, and S. T.Purucker (2009), Evaluating uncertainty in integrated environmental models: A review of concepts and tools, Water Resour. Res., 45, W06421, doi:10.1029/2008WR007301.
  • Mills, H. H., G. R.Brakenridge, R. B.Jacobson, W. L.Newell, M. J.Pavich, and J. S.Pomeroy (1987), Appalachian mountains and plateaus, in Geomorphic Systems of North America, edited by W. L.Graf, pp. 550, Geological Society of America, Boulder, CO.
  • Mohamoud, Y. M. (2008), Prediction of daily flow duration curves and streamflow for ungauged catchments using regional flow duration curves, Hydrol. Sci. J., 53(4), 706724.
  • Moriasi, D. N., J. G.Arnold, M. W.Van Liew, R. L.Bingner, R. D.Harmel, and T. L.Veith (2007), Model evaluation guidelines for systematic quantification of accuracy in watershed simulations, Trans. ASABE, 50(3), 885900.
  • Nash, J. E., and J. V.Sutcliffe (1970), River flow forecasting through conceptual models, Part 1: A discussion of principles, J. Hydrol., 10, 282290.
  • National Agricultural Statistics Service (NASS) (2011), 2010 North Carolina Cropland Data Layer, [Available at http://datagateway.nrcs.usda.gov/], NASS, USDA, Washington, D. C.
  • National Climate Data Center (NCDC) (2011), Monthly climate station summaries, 1981–2010, [Available at www.ncdc.noaa.gov], U.S. Department of Commerce, Washington, D. C.
  • NCAR Earth Observing Laboratory (2011), GCIP/EOP Surface: Precipitation NCEP/EMC 4KM Gridded Data (GRIB) Stage IV Data, [Avialable at http://data.eol.ucar.edu/codiac/dss/id=21.093], National Center for Atmospheric Research, Boulder, Col.
  • Neitsch, S. L., J. G.Arnold, J. R.Kiniry, and J. R.Williams (2011), Soil and Water Assessment Tool Theoretical Documentation Version 2009, Texas Water Resources Institute Technical Report 406, Texas A&M University System, College Station, TX.
  • O'Keeffe, J. (2009), Sustaining river ecosystems: balancing use and protection, Progress Phys. Geogr., 33(3), 339357.
  • Peterson, J. R., and J. M.Hamlett (1998), Hydrologic calibration of the SWAT model in a watershed containing fragipan soils, J. Am. Water Resour. Assoc., 34(3), 531544.
  • Poff, N. L., and J. K. H.Zimmerman (2010), Ecological responses to altered flow regimes: A literature review to inform the science and management of environmental flows, Freshwater Biol.55(1), 194205.
  • Price, K., S. T.Purucker, and S. R.Kraemer (2011), Multi-scale comparison of stage IV NEXRAD (MPE) and gauge precipitation data for watershed modeling, Proceedings of Georgia Water Resources Conference, 11–13 April, Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA.
  • R Development Core Team (2011), R: A language and environment for statistical computing; visit R Foundation for Statistical Computing, visit www.R-project.org.
  • Robert, C. P., and G.Casella (2004), Monte Carlo Statistical Methods, Springer, New York.
  • Santhi, C., N.Kannan, J. G.Arnold, and M.Di Luzio (2008), Spatial calibration and temporal validation of flow for regional scale hydrologic modeling, J. Am. Water Resour. Assoc., 44(4), 829846.
  • Setegn, S. G., R.Srinivasan, and B.Daraghi (2008), Hydrological modelling in the Lake Tana Basin, Ethiopia using SWAT model, Open Hydrol. J., 2, 4962.
  • Soil Survey Staff (2011), U. S. General Soil Map (STATSGO2), [Available at http://soildatamart.nrcs.usda.gov], Natural Resources Conservation Service (NRCS), U.S. Dep. of Agriculture, Lincoln, Neb.
  • Suleiman, A. A., C. M. T.Soler, and G.Hoogenboom (2007), Evaluation of FAO-56 crop coefficient procedures for deficit irrigation management of cotton in a humid climate, Agric. Water Manage., 91(1–3), 3342.
  • Tekleab, S., S.Uhlenbrook, Y.Mohamed, H. H. G.Savenije, M.Temesgen, and J.Wenninger (2011), Water balance modeling of Upper Blue Nile catchments using a top-down approach, Hydrol. Earth Syst. Sci., 15(7), 21792193.
  • Thiemann, M., M.Trosset, H.Gupta, and S.Sorooshian (2001), Bayesian recursive parameter estimation for hydrologic models, Water Resour. Res., 37(10), 25212535.
  • Uhlenbrook, S., and A.Sieber (2005), On the value of experimental data to reduce the prediction uncertainty of a process-oriented catchment model, Environ. Modell. Software, 20(1), 1932.
  • Uhlenbrook, S., J.Seibert, C.Leibundgut, and A.Rodhe (1999), Prediction uncertainty of conceptual rainfall-runoff models caused by problems in identifying model parameters and structure, Hydrol. Sci. J., 44(5), 779797.
  • Van der Velde, M., F.Bouraoui, and A.Aloe (2009), Pan-European regional-scale modelling of water and N efficiencies of rapeseed cultivation for biodiesel production, Global Change Biol., 15(1), 2437.
  • vanGriensven, A., T.Meixner, S.Grunwald, T.Bishop, M.Di Luzio, and R.Srinivasan (2006), A global sensitivity analysis tool for the parameters of multi-variable catchment models, J. Hydrol., 324, 1023.
  • Wang, X., A. M.Melesse, and W.Yang (2006), Influences of potential evapotranspiration estimation methods on SWAT's hydrologic simulation in a northwestern Minnesota watershed, Trans. ASABE, 49(6), 17551771.
  • Westerberg, I. K., J. L.Guerrero, P. M.Younger, K. J.Beven, J.Seibert, S.Halldin, J. E.Freer, and C. Y.Xu (2011), Calibration of hydrological models using flow-duration curves, Hydrol. Earth Syst. Sci., 15(7), 22052227.
  • White, E. D., Z. M.Easton, D. R.Fuka, A. S.Collick, E.Adgo, M.McCartney, S. B.Awulachew, Y. G.Selassie, and T. S.Steenhuis (2011), Development and application of a physically based landscape water balance in the SWAT model, Hydrol. Proc., 25(6), 915925, doi:10.1002/hyp.7876, 2010.
  • Willmott, C. (1981), On the validation of models, Phys. Geogr., 2, 184194.
  • Winchell, M., R.Srinivasan, M.DiLuzio, and J.Arnold (2007), ArcSWAT Interface for SWAT2005: User's Guide, Texas Agricultural Experiment Station, Blackland Research Center, Temple, Tex.
  • Wood, S. N. (2010), Statistical inference for noisy nonlinear ecological dynamics, Nature, 466, 11021104.
  • Wu, K., and Y. J.Xu (2006), Evaluation of the applicability of the SWAT model for coastal watersheds in southeastern Louisiana, J. Am. Water Resour. Assoc., 42(5), 12471260.
  • Yapo, P. O., H. V.Gupta, and S.Sorooshian (1998), Multi-objective global optimization for hydrologic models, J. Hydrol., 204(1–4), 8397.