SEARCH

SEARCH BY CITATION

References

  • Albert, M. R. (2002), Effects of snow and firn ventilation on sublimation rates, Ann. Glaciol., 35, 510514.
  • Andreadis, K., and D.Lettenmaier (2006), Trends in 20th century drought over the continental United States, Geophys. Res. Lett., 33, L10403, doi:10.1029/2006GL025711.
  • Arons, E. M., and S. C.Colbeck (1995), Geometry of heat and mass transfer in dry snow: A review of theory and experiment, Rev. Geophys., 33, 463493.
  • Asmus, K., and C.Grant (1999), Surface based radiometer (SBR) data acquisition system, Int. J. Remote Sens., 20, 31253129.
  • Barnett, T. P., J. C.Adam, and D. P.Lettenmaier (2005), Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 438, 303309, doi:10.1038/nature04141.
  • Bartelt, P. B., and M.Lehning (2002), A physical SNOWPACK model for avalanche warning services. Part I: Numerical model, Cold Reg. Sci. Technol., 35(3), 123145.
  • Brown, R. D., B.Brasnett, and D.Robinson (2003), Gridded North American monthly snow depth and snow water equivalent for GCM evaluation, Atmos. Ocean, 41, 114.
  • Brucker, L., A.Royer, G.Picard, A.Langlois, and M.Fily (2010), Hourly simulations of seasonal snow microwave brightness temperature using coupled snow evolution-emission models in Québec, Canada, Remote Sens. Environ., 115, 19661977.
  • Bukovsky, M. S., and D. J.Karoly (2007), A brief evaluation of precipitation from the North American regional reanalysis, J. Hydrometeorol., 8(4), 837847.
  • Butt, M., and R. E. J.Kelly (2008), Monitoring snowcover in the UK using passive microwave remote sensing observations and the HUT model, Int. J. Remote Sens., 29(14), 42494267, doi:10.1080/01431160801891754.
  • Chang, A. T. C., J. L.Foster, D. K.Hall, A.Rango, and B. K.Hartline (1982), Snow water equivalent estimation by microwave radiometry, Cold Reg. Sci. Technol., 5(3), 259267.
  • Clark, M. P., J.Hendrikx, A. G.Slater, D.Kavetski, B.Anderson, N. J.Cullen, T.Kerr, E.Örn Hreinsson, and R. A.Woods (2011), Representing spatial variability of snow water equivalent in hydrologic and land-surface models: A review, Water Resour. Res., 47, W07539, doi:10.1029/2011WR010745.
  • Colbeck, S. C. (1983), Theory of metamorphism of dry snow, J. Geophys. Res., 88, 54755482.
  • Derksen, C., A.Walker, and B.Goodison (2005), Evaluation of passive microwave snow water equivalent retrievals across the boreal forest/tundra transition of western Canada, Remote Sens. Environ., 96(3–4), 315327.
  • Derksen, C., P.Toose, A.Rees, L.Wang, M.English, A.Walker, and M.Sturm (2010), Development of a tundra-specific snow water equivalent retrieval algorithm for satellite passive microwave data, Remote Sens. Environ., 114, 16991709.
  • Derksen, C., P.Toose, J.Lemmetyinen, J.Pulliainen, A.Langlois, N.Rutter, and M.Fuller (2012a), Evaluation of passive microwave brightness temperature simulations and snow water equivalent retrievals through a winter season, Remote Sens. Environ., 117, 236248.
  • Derksen, C., et al. (2012b), Variability and change in the Canadian cryosphere, Clim. Change, 115, 5988, doi:10.1007/s10584-012-0470-0.
  • Domine, F., R.Salvatori, L.Legagneux, R.Salzano, M.Fily, and R.Casacchia (2006), Correlation between the specific surface area and the short wave infrared (SWIR) reflectance of snow, Cold Reg. Sci. Technol., 46, 6068.
  • Domine, F., M.Albert, T.Huthwelker, H.-W.Jacobi, A. A.Kokhanovsky, M.Lehning, G.Picard, and W. R.Simpson (2008), Snow physics as relevant to snow photochemistry, Atmos. Chem. Phys., 8, 171208.
  • Dong, J., J. P.Walker, and P. R.Houser (2005), Factors affecting remotely sensed snow water equivalent uncertainty, Remote Sens. Environ., 97(1), 6882.
  • Durand, M., and S. A.Margulis (2007), Correcting first-order errors in snow water equivalent estimates using a multifrequency, multiscale radiometric data assimilation scheme, J. Geophys. Res., 112, D13121, doi:10.1029/2006JD008067.
  • Durand, M., E. J.Kim, and S. A.Margulis (2008), Quantifying uncertainty in modeling snow microwave radiance for a mountain snowpack at the point-scale, including stratigraphic effects, IEEE Trans. Geosci. Remote Sens., 46(6), 17531767.
  • Dutra, E., G.Balsamo, P.Viterbo, P. M. A.Miranda, A.Beljaars, C.Schär, and K.Elder (2010), An improved snow scheme for the ECMWF land surface model: Description and offline validation, J. Hydrometeorol., 11(4), 899916, doi:10.1175/2010JHM1249.1.
  • Essery, R. (1998), Boreal forests and snow in climate models, Hydrol. Process., 12(10–11), 15611567.
  • Fletcher, C. G., P. J.Kushner, A.Hall, and X.Qu (2009), Circulation responses to snow albedo feedback in climate change, Geophys. Res. Lett., 36, L09702, doi:10.1029/2009GL038011.
  • Foster, J. L., A. T. C.Chang, and D. K.Hall (1997), Comparison of snow mass estimates from a prototype passive microwave snow algorithm, a revised algorithm and a snow depth climatology, Remote Sens. Environ., 62, 132142.
  • Foster, J. L., C.Sun, J. P.Walker, R.Kelly, A. T. C.Chang, J.Dong, and H.Powell (2005), Quantifying the uncertainty in passive microwave snow water equivalent observations, Remote Sens. Environ., 94(2), 187203.
  • Foster, J. L., et al. (2011), A blended global snow product using visible, passive microwave and scatterometer satellite data, Int. J. Remote Sens., 32(5), 13711395.
  • Frei, A., and S.Lee (2010), A comparison of optical-band based snow extent products during spring over North America, Remote Sens. Environ., 114, 19401948.
  • Gallet, J.-C., F.Domine, C. S.Zender, and G.Picard (2009), Measurement of the specific surface area of snow using infrared reflectance in an integrating sphere at 1310 and 1550 nm, Cryosphere, 3, 167182.
  • Gallet, J.-C., F.Domine, L.Arnaud, G.Picard, and J.Savarino (2010), Vertical profiles of the specific surface area of the snow at Dome C, Antarctica, Cryosphere Discuss., 4, 16471708.
  • Grenfell, T. C., and S. G.Warren (1999), Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation, J. Geophys. Res., 104, 31,69731,708.
  • Grody, N. (2008), Relationship between snow parameters and microwave satellite measurements: Theory compared with Advanced Microwave Sounding Unit observations from 23 to 150 GHz, J. Geophys. Res., 113, D22108, doi:10.1029/2007JD009685.
  • Gustafsson, D., M.Stähli and P.-E.Jansson (2001), The surface energy balance of a snow cover: Comparing measurements to two different simulation models, Theor. Appl. Climatol., 70, 8196.
  • Hall, D. K., G. A.Riggs, and V. V.Salomonson (1995), Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data, Remote Sens. Environ., 54, 27140.
  • Hallikainen, M., F. T.Ulaby, and M.Abdelrazik (1986), Dielectric properties of snow in the 3 to 37 GHz range, IEEE Trans. Ant. Propag., 34, 13291340.
  • Hansen, M., R.DeFries, J. R. G.Townshend, R.Sohlberg, C.Dimiceli, and M.Carroll (2002), Towards an operational MODIS continuous fields of percent tree cover algorithm: Example using AVHRR and MODIS data, Remote Sens. Environ., 83, 303319.
  • Hardiman, S. C., P. J.Kushner, and J.Cohen (2008), Investigating the ability of general circulation models to capture the effects of Eurasian snow cover on winter climate, J. Geophys. Res., 113, D21123, doi:10.1029/2008JD010623.
  • Huang, C., S. A.Margulis, M. T.Durand, and K. N.Musselman (2012), Assessment of snow grain-size model and stratigraphy representation impacts on snow radiance assimilation: Forward modeling evaluation, IEEE Trans. Geosci. Remote Sens., 50, 45514561, doi:10.1109/TGRS.2012.2192480.
  • Huining, W., J.Pulliainen, and M.Hallikainen (1999), Effective permittivity of dry snow in the 18 to 90 GHz range, Prog. Electromagn. Res., 24, 119138.
  • Kaufman, D. S., et al. (2009), Recent warming reverses long-term Arctic cooling, Science, 325(5945), 12361239.
  • Kelly, R., A. T. C.Chang, L.Tsang, and J.Foster (2003), A prototype AMSR-E global snow area and snow depth algorithm, IEEE Trans. Geosci. Remote Sens., 41(2), 230242.
  • Kerr, Y. H., and E. G.Njoki (1990), A semiempirical model for interpreting microwave emission from semiarid land surfaces as seen from space, IEEE Trans. Geosci. Remote Sens., 28(3), 384393.
  • Kontu, A., and J.Pulliainen (2010), Simulation of spaceborne microwave radiometer measurements of snow cover using in situ data and brightness temperature modeling, IEEE Trans. Geosci. Remote Sens., 48(3), 10311044.
  • Kruopis, N., J.Praks, A. N.Arslan, H.Alasalmi, J.Koskinen, and M.Hallikainen (1999), Passive microwave measurements of snow-covered forest areas in EMAC'95, IEEE Trans. Geosci. Remote Sens., 37(6), 26992705.
  • Langlois, A., D. G.Barber, and B. J.Hwang (2007), Development of a snow water equivalent algorithm using passive microwave data over first-year sea ice, Remote Sens. Environ., 106(1), 7588.
  • Langlois, A., T.Fisico, D. G.Barber, and T. N.Papakyriakou (2008), The response of snow thermophysical processes to the passage of a polar low-pressure system and its impact on in-situ passive microwave data: A case study, J. Geophys. Res., 113, C03S04, doi:10.1029/2007JC004197.
  • Langlois, A., L.Brucker, J.Kohn, A.Royer, C.Derksen, P.Cliche, G.Picard, M.Fily, and J.-M.Willemet (2009), Regional retrieval of snow water equivalent (SWE) using thermodynamic snow models in Québec, Canada, J. Hydrometeorol., 10(6), 14471463.
  • Langlois, A., A.Royer, and K.Goïta (2010a), Linkages between simulated and spaceborne passive microwave brightness temperatures with in-situ measurements of snow and vegetation properties, Can. IPY Spec. Issue Can. J. Remote Sens., 36(1), 135148.
  • Langlois, A., A.Royer, B.Montpetit, G.Picard, L.Brucker, L.Arnaud, K.Goïta, and M.Fily (2010b), On the relationship between measured and modeled snow grain morphology using infrared reflectance, Cold Reg. Sci. Technol., 61, 3442.
  • Langlois, A., A.Royer, F.Dupont, A.Roy, K.Goïta, and G.Picard (2011), Improved vegetation corrections for satellite passive microwave remote sensing using airborne radiometer data, IEEE Trans. Geosci. Remote Sens., 49(10), 38243837.
  • Latifovic, R., Z.-L.Zhu, J.Cihlar, C.Giri, and I.Olthof (2004), Land cover mapping of North and Central America—Global land cover 2000, Remote Sens. Environ., 89(1), 116127.
  • Lehning, M., P. B.Bartelt, R. L.Brown, C.Fierz, and P.Satyawali (2002), A physical SNOWPACK model for the Swiss Avalanche Warning Services. Part III: Meteorological boundary conditions, thin layer formulation and evaluation, Cold Reg. Sci. Technol., 35(3), 169184.
  • Lemke, P., et al. (2007), Observations: Changes in snow, ice and frozen ground, in: Climate Change 2007: The Physical Science Basis, in Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S.Solomon, et al., Cambridge Univ. Press, New York.
  • Lemmetyinen, J., C.Derksen, J.Pulliainen, W.Strapp, P.Toose, A.Walker, S.Tauriainen, J.Pihlflyckt, J.-P.Kärnä, and M. T.Hallikainen (2009), A comparison of airborne microwave brightness temperatures and snowpack properties across the boreal forests of Finland and Western Canada, IEEE Trans. Geosci. Remote Sens., 47(3), 965978.
  • Li, S., and X.Zhou (2001), Derivation of surface direct beam spectral albedo for a wide range of incident angles from spectral reflectance measurements under overcast conditions, paper presented at IEEE 2001 International Geoscience and Remote Sensing Symposium (IGARSS 2001), Sydney, Australia, 9–13 July, pp. 18011803.
  • Lundy, C. C. (2000), Statistical validation of a numerical snow cover model and preliminary experimental results to facilitate model improvement, M.Sc. thesis, Dept. Civil. Eng., Mont. State Univ., Bozeman, Mont.
  • Male, D. H., and R. J.Granger (1981), Snow surface energy exchange, Water Resour. Res., 17, 609627.
  • Markus, T., and D.Cavalieri (2000), An enhancement of the NASA Team Sea Ice Algorithm, IEEE Trans. Geosci. Remote Sens., 38, 13871398.
  • Markus, T., D. C.Powell, and J. R.Wang (2006), Sensitivity of passive microwave snow depth retrievals to weather effects and snow evolution, IEEE Trans. Geosci. Remote Sens., 44, 6877.
  • Matzl, M., and M.Schneebeli (2006), Areal measurement of specific surface area in snow profiles by near infrared reflectivity, J. Glaciol., 52(179), 558564.
  • Mätzler, C. (1987), Applications of the interaction of microwaves with natural snow cover. Remote Sens. Rev., 2(1), 259387.
  • Mätzler, C. (1992a), Relation between grain-size and correlation length of snow, J. Glaciol., 48(162), 461466.
  • Mätzler, C. (1992b), Ground-based observations of atmospheric radiation at 5, 10, 21, 35, and 94 GHz, Radio Sci., 27(3), 403415.
  • Mätzler, C., and A.Wiesmann (1999), Extension of the microwave emission model of layered snowpacks to coarse-grained snow, Remote Sens. Environ., 70(3), 317325.
  • Maurer, E. P., J. D.Rhoads, R. O.Dubayah, and D. P.Lettenmaier (2003), Evaluation of the snow-covered area data product from MODIS, Hydrol. Process., 17, 5971.
  • Mesinger, F., et al. (2006), North American Regional Reanalysis, Bull. Am. Meteorol. Soc., 87(3), 343360.
  • Metcalfe, J. R., and B. E.Goodison (1993), Correction of Canadian winter precipitation data, paper presented at Eighth Symposium on Meteorological Observations and Instrumentation, Anaheim, Calif., AMS, Boston, Mass.
  • Montpetit, B., A.Royer, A.Langlois, P.Cliche, A.Roy, N.Champollion, G.Picard, F.Domine, and R.Obbard (2011), New short-wave infrared albedo measurements for snow specific surface area retrieval, J. Glaciol., 58, 941952.
  • Morin, S., F.Domine, A.Dufour, Y.Lejeune, B.Lesaffre, J.-M.Willemet, C. M.Carmagnola, and H.-W.Jacobi (2012), Measurements and modeling of the vertical profile of specific surface area of an alpine snowpack, Adv. Water Resour., doi:10.1016/j.advwatres.2012.01.010, in press.
  • Pampaloni, P. (2004), Microwave radiometry of forests, Waves Random Complex Medium, 14, 275298.
  • Pardé, M., K.Goïta, A.Royer, and F.Vachon (2005), Boreal forest transmissivity in the microwave domain using ground-based measurements, IEEE Trans. Geosci. Remote Sens., 2(2), 169171.
  • Pardé, M., K.Goïta, and A.Royer (2007), Inversion of a passive microwave snow emission model for water equivalent estimation using airborne and satellite data, Remote Sens. Environ., 111, 346356.
  • Picard, G., L.Arnaud, F.Domine, and M.Fily (2010), Determining snow specific surface area from near-infrared reflectance measurements: Numerical study of the influence of grain shape, Cold Reg. Sci. Technol., 56, 1017.
  • Pulliainen, J. (2006), Mapping of snow water equivalent and snow depth in boreal and sub-arctic zones by assimilating space-borne microwave radiometer data and ground-based observations, Remote Sens. Environ., 101(2), 257269.
  • Pulliainen, J., and M.Hallikainen (2001), Retrieval of regional snow water equivalent from space-borne passive microwave observations, Remote Sens. Environ., 75(1), 7685.
  • Qiu, Y., H.Guo, J.Shi, S.Kang, J.Lemmetyinen, and J. R.Wang (2011), Analysis of the passive microwave high-frequency signal in the shallow snow retrieval, in Geoscience and Remote Sensing Symposium (IGARSS), 2011, IEEE International, 24–29 July 2011, pp. 38633866.
  • Rees, A., J.Lemmetyinen, C.Derksen, J.Pulliainen, and M.English (2010), Observed and modelled effects of ice lens formation on passive microwave brightness temperatures over snow covered tundra, Remote Sens. Environ., 114, 116126.
  • Romanovsky, V. E., S. L.Smith, and H. H.Christiansen (2010), Permafrost thermal state in the polar northern hemisphere during the International Polar Year 2007–2009: A synthesis, Permafrost Periglacial Process., 21(2), 106116.
  • Rosenfeld, S., and N.Grody (2000), Anomalous microwave spectra of snow cover observed from special sensor microwave/imager measurements, J. Geophys. Res., 105(D11), 14,91314,925.
  • Roy, V., K.Goïta, A.Royer, A.Walker, and B.Goodison (2004), Snow water equivalent retrieval in a Canadian boreal environment from microwave measurements using the HUT snow emission model, IEEE Trans. Geosci. Remote Sens., 42(9), 18501859.
  • Salomonson, V. V., and I.Appel (2004), Estimating fractional snow cover from MODIS using the normalized difference snow index, Remote Sens. Environ., 89, 351360.
  • Shook, K., and D. M.Gray (1996), Small-scale spatial structure of shallow snowcovers, Hydrol. Process., 10, 12831292.
  • Solheim, F.1993, Use of pointed water vapor radiometers to improve GPS surveying accuracy, Ph.D. dissertation, Univ. of Colo., Boulder, Colo., December.
  • Spreitzhofer, G., C.Fierz, and M.Lehning (2004), SN_GUI: A graphical user interface for snow pack modeling, Comput. Geosci., 30(8), 809816.
  • Takala, M., K.Luojus, J.Pulliainen, C.Derksen, J.Lemmetyinen, J.-P.Kärnä, J.Koskinen, and B.Bojkov (2011), Estimating northern hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements, Remote Sens. Environ., 115(12), 35173529.
  • Tedesco, M., and E. J.Kim (2006), Intercomparison of electromagnetic models for passive microwave remote sensing of snow, IEEE Trans. Geosci. Remote Sens., 44(10–1), 26542666.
  • Tiuri, M. E., A. H.Sihlova, E. G.Nyfors, and M. T.Hallikainen (1984), The complex dielectric constant of snow at microwave frequencies, IEEE J. Ocean. Eng., 9(5), 377382.
  • Touré, A. M., K.Goïta, A.Royer, E. J.Kim, M.Durand, S. A.Margulis, and H.Lu (2011), A case study of using a multilayered thermodynamical snow model for radiance assimilation, IEEE Trans. Geosci. Remote Sens., 49(8), 28282837.
  • Walker, A., J. W.Strapp, and I.MacPherson. (2002) A Canadian Twin Otter microwave radiometer installation for airborne remote sensing of snow, ice and soil moisture, paper presented at International Geoscience and Remote Sensing Symposium [CD-ROM], Toronto, Ont., June.
  • Wegmüller, U., and C.Mätzler (1999), Rough bare soil reflectivity model, IEEE Trans. Geosci. Remote Sens., 37(3), 13911395.
  • Wiesmann, A., and C.Mätzler (1999), Microwave emission model of layered snowpacks, Remote Sens. Environ., 70(3), 307316.
  • Wiesmann, A., C.Mätzler, and T.Weise (1998), Radiometric and structural measurements of snow samples, Radio Sci., 33(2), 273289.
  • Yang, D., S.Ishida, B. E.Goodison, and T.Gunther (1999), Bias correction of daily precipitation for Greenland, J. Geophys. Res., 104(D6), 61716181.