SEARCH

SEARCH BY CITATION

References

  • Adomian, G. (1994), Solving Frontier Problems in Physics—The Decomposition Method, Kluwer Acad., Dordrecht, Netherlands.
  • Akylas, E., and A. D. Koussis (2007), Response of sloping unconfined aquifer to stage changes in adjacent stream. I. Theoretical analysis and derivation of system response functions, J. Hydrol., 338(1–2), 8595.
  • Ascher, U. M., and L. R. Petzold (1998), Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, SIAM, Philadelphia, Pa.
  • Barenblatt, G. I., V. M. Entov, and V.M., Ryzhik (1990), Theory of Fluid Flows Through Natural Rocks (Theory and Applications of Transport in Porous Media), Kluwer Acad., Dordrecht, Netherlands.
  • Bear, J. (1972), Dynamics of Fluids in Porous Media, Elsevier, New York.
  • Bear, J. (1979), Hydraulics of Groundwater, McGraw-Hill, New York.
  • Cassiani, G., and A. Binley (2005), Modeling unsaturated flow in a layered formation under quasi-steady state conditions using geophysical data constraints, Adv. Water Resour., 28(5), 467477.
  • Chen, Z.-X., G. S. Bodvarsson, P. A. Whitherspoon, and Y. C. Yortsos (1995), An integral equation formulation for the unconfined flow of groundwater with variable inlet conditions, Transp. Porous Media, 18, 1536.
  • Chen, J.-W., H.-H. Hsieh, H.-F. Yeh, and C.-H. Lee (2010), The effect of the variation of river water levels on the estimation of groundwater recharge in the Hsinhuwei River, Taiwan, Environ. Earth Sci., 59(6), 12971307.
  • Dagan, G., and J. Bear (1968), Solving the problem of local interface upconing in a coastal aquifer by the method of small perturbations, J. Hydraul. Res., 6(1), 1544.
  • Du Fort, E. C., and S. P. Frankel (1953), Stability conditions in the numerical treatment of parabolic differential equations, Math. Tables Aids Comp., 7, 135152.
  • Harbaugh, A. W. (2005), MODFLOW-2005, The US geological survey modular ground-water model—The ground-water flow process, U. S. Geol. Surv. Tech. Methods 6-A16, Reston, Va.
  • Hatch C. E., A. T. Fisher, J. S. Revenaugh, J. Constantz, and C. Ruehl (2006), Quantifying surface water–groundwater interactions using time series analysis of streambed thermal records: Method development, Water Resour. Res., 42, W10410, doi:10.1029/2005WR004787.
  • Hunt, B. (1999), Unsteady stream depletion from ground water pumping, Ground Water, 37, 98102.
  • Intaraprasong, T., and H. Zhan (2009), A general framework of stream-aquifer interaction caused by variable stream stages, J. Hydrol., 373, 112121.
  • Kacimov, A., and Y. Obnosov (2012), Analytical solutions for seepage near material boundaries in dam cores: the Davison-Kalinin problems revisited, Appl. Math. Model., 36(3), 12861301.
  • Langhaar, H. L. (1951), Dimensional Analysis and Theory of Models, Wiley, New York.
  • Latinopoulos, P. (1986), Analytical solutions for strip basin recharge to aquifers with Cauchy boundary conditions, J. Hydrol., 83(3–4), 197206.
  • Li, L., D. A. Lockington, D.A. Barry, J.-Y. Parlange, and P. Perrochet (2003), Confined-unconfined flow in a horizontal confined aquifer, J. Hydrol., 271, 150155.
  • Lockington, D. A., J.-Y. Parlange, M. B., Parlange, and J. Selker (2000), Similarity solution of the Boussinesq equation, Adv. Water Resour., 23, 725729.
  • Marino, M. A. (1973), Water-table fluctuation in semipervious stream-unconfined aquifer systems, J. Hydrol., 19(1), 4352.
  • McDonald, M. G., and A. W. Harbaugh (1988), A modular three-dimensional finite-difference ground-water flow model, Open-File Rep. 83-875, U.S. Geol. Survey, Denver, Colo.
  • Mehl, S., and M. C. Hill (2010), Grid-size dependence of Cauchy boundary conditions used to simulate stream-aquifer interactions, Adv. Water Resour., 33(4), 430442.
  • Moench, A. F., and P. M. Barlow (2000), Aquifer response to stream-stage and recharge variations. I. Analytical step-response functions, J. Hydrol., 230(3–4), 192210.
  • Moutsopoulos, K. N. (2007), One-dimensional unsteady inertial flow in phreatic aquifers induced by a sudden change of the boundary head, Transp. Porous Media, 70, 97125, doi:10.1007/s11242-006-9086-z.
  • Moutsopoulos, K. N. (2009), Exact and approximate analytical solutions for unsteady fully developed turbulent flow in porous media and fractures for time dependent boundary conditions, J. Hydrol., 369(1–2), 7889.
  • Moutsopoulos, K. N. (2010), The analytical solution of the Boussinesq equation for flow induced by a step change of the water table elevation revisited. Transp. Porous Media, 385, 919940, doi:10.1007/s11242-010-9599-3.
  • Moutsopoulos, Κ. Ν., Α. Α. Konstantinidis, I. Meladiotis, C. D. Tzimopoulos, and E. C. Aifantis (2001), Hydraulic behavior and contaminant transport in multiple porosity media, Transp. Porous Media, 42, 265292.
  • Munson, B. R., D. F. Young, and T. H. Okiishi (1998), Fundamentals of Fluid Mechanics, Wiley, New York.
  • Önder, H. (1998), One-dimensional transient flow in a finite fractured aquifer system, Hydrol. Sci. J., 43, 243261.
  • Pistiner, A. (2011), An analytical solution for unsteady flow in a phreatic aquifer in the case of continuous rise, Transp. Porous Media, 86(3), 815825.
  • Rice, J. D., and J. M. Duncan (2010), Deformation and cracking of seepage barriers in dams due to changes in the pore pressure regime, J. Geotech. Geoenviron. Eng., 136, 1625.
  • Sablani, S.S., A. Kacimov, J. Perret, A.S. Mujumdar, and A. Campo (2005), Non-iterative estimation of heat transfer coefficients using artificial neural network models, Int. J. Heat Mass Transfer, 48, 665679.
  • Serrano, S.E., S. R. Workman, K. Srivastava, and B. Miller-Van Cleave (2007), Models of nonlinear stream aquifer transients, J. Hydrol., 336(1–2), 199205.
  • Sophocleous, M. (2002), Interactions between groundwater and surface water: The state of the science, Hydrogeol. J., 10(1), 5267.
  • Sophocleous, M., A. Koussis, J. L. Martin, and S. P. Perkins (1995), Evaluation of simplified stream-aquifer depletion models for water rights administration, Ground Water, 33, 579588.
  • Spanoudaki, K., A. Nanou-Giannarou, Y. Paschalinos, C. D. Memos, and A. I. Stamou (2010), Analytical solutions to the stream-aquifer interaction problem: A critical review, Global Nest J., 12, 126139.
  • Strack, O. D. L., and A. R. Kacimov (2009), Application of mathematics to flow in porous media before the computer age; an introduction to the special issue “Applying mathematics to flow in porous media”, Eng. Math., 64(2), 8184, doi:10.1007/s10665-009-9289.
  • Sun, D., and H. Zhan (2007), Pumping induced depletion from two streams, Adv. Water Resour., 30, 10161026.
  • Teloglou, I. S., and R. K. Bansal (2012), Transient solution for stream–unconfined aquifer interaction due to time varying stream head and in the presence of leakage, J. Hydrol., 428–429, 6879.
  • Telyakovskiy, A. S., G. Braga, and F. Furtado (2002), Approximate similarity solutions to the Boussinesq equation, Adv. Water Resour., 25, 191194.
  • Tolikas, P. K., E. G. Sidiropoulos, and C. D. Tzimopoulos (1984), A simple analytical solution for the Boussinesq one-dimensional groundwater flow equation, Water Resour. Res., 20(1), 2428.
  • Upadhyaya, A., and H. S. Chauhan (1998), Solutions of Boussinesq equation in semiinfinite flow region, J. Irrig. Drain. Div., Am. Soc. Civ. Eng., 124(5), 265270.
  • Wang, X.-S., L. Wan, and B. Hu (2009), New approximate solutions of horizontal confined-unconfined flow, J. Hydrol., 376, 417427.
  • Wyckoff, R. D., H. G. Botset, and M. Muskat (1932), Flow of liquids through porous media under the action of gravity, Physics, 3(2), 90113.
  • Zlotnik, V. A., and H. Huang (1999), Effect of shallow penetration and streambed sediments on aquifer response to stream stage fluctuations (analytical model), Ground Water, 37, 599605.