SEARCH

SEARCH BY CITATION

References

  • Alho, P., A.Kukko, H.Hyyppä, H.Kaartinen, J.Hyyppä, and A.Jaakkola (2009), Application of boat-based laser scanning for river survey, Earth Surf. Processes Landforms, 34, 18311838, doi:10.1002/esp.1879.
  • Antonarakis, A. S., K. S.Richards, J.Brasington, and M.Bithell (2009), Leafless roughness of complex tree morphology using terrestrial LiDAR, Water Resour. Res., 45, W10401, doi:10.1029/2008WR007666.
  • Antonarakis, A. S., K. S.Richards, J.Brasington, and E.Muller (2010), Determining LAI and leafy tree roughness using terrestrial laser scanning, Water Resour. Res., 46, W06510, doi:10.1029/2009WR008318.
  • Aryal, A., B. A.Brooks, M. E.Reid, G. W.Bawden, and G.Pawlak (2012), Displacement fields from point cloud data: application of particle imaging velocimetry to landslide geodesy, J. Geophys. Res., doi:10.1029/2011JF002161, in press.
  • AshmoreP. E., and M.Church (1998), Sediment transport and river morphology: A paradigm for study, in Gravel-Bed Rivers in the Environment, edited by R. D.Hey, J. C.Bathurst, and C. R.Thorne, pp. 115148, Wiley, Chichester.
  • Barber, D., J.Mills, and S.Smith-Voysey (2008), Geometric validation of a ground-based mobile laser scanning system, ISPRS J. Photogram. Remote Sensing, 63, 128141.
  • Barnes, H. H. (1967), Roughness characteristics of natural channels, U.S. Geological Survey Water-Supply Paper1849, 213 pp.
  • Bates, P. D., K. J.Marks, and M. S.Horritt (2003), Optimal use of high-resolution topographic data in flood inundation models, Hydrol. Processes17, 52375557.
  • Besl, P. J., and N. D.McKay (1992), A method for registration of 3-D shapes, IEEE Trans. Pattern Anal. Machine Intel., 14, 239256.
  • Brasington, J. (2010), From grain to floodplain: Hyperscale models of braided rivers, J. Hydraul. Res., 48(4), 5253, Suppl. 4.
  • Brasington, J., and K. S.Richards (1998), Interactions between model predictions, parameters and DTM scales for TOPMODEL, Comput. Geosci., 24, 299314.
  • Brasington, J., B. T.Rumsby, and R.McVey (2000), Monitoring and modelling morphological change in braided river systems using the Global Positioning System, Earth Surf. Processes Landforms, 25, 973990.
  • Brasington, J., J.Langham, and B. T.Rumsby (2003), Three-dimensional channel sediment budgets: methodological sensitivity of remote survey methods, Geomorphology, 53, 299316.
  • Brasington, J., C. D.Rennie, D.Vericat, R.Williams, B.Goodsell, M.Hicks, and R.Batalla (2011), Monitoring braided river morphodynamics with an acoustic Doppler current profiler, in Proceedings of the 34th World Congress of the International Association for Hydro-Environment Research and Engineering, edited by E. M.Valentine et al., pp. 33963403, EngineersAustralia.
  • Brodu, N., and D.Lague (2012), 3-D Terrestrial LiDAR data classification of complex natural scenes using a multi-scale dimensionality criterion: Applications in geomorphology, ISPRS J. Photogram. Remote Sensing, 68, 121134.
  • Buckley, S. J., J. A.Howell, H. D.Enge, and T. H.Kurz (2008), Terrestrial laser scanning in geology: Data acquisition, processing and accuracy considerations, J. Geol. Soc., 165, 625638.
  • Bunte, K., and S. R.Apt (2001), Sampling surface and subsurface particle-size distributions in wadable gravel- and cobble-bed streams for analysis in sediment transport, hydraulics, and streambed monitoring, General TechnicalRep. RMRS-GTR-74, U.S. Dept. of Agriculture, Forest Service, Rocky Mountain Forest and Range Experimental Station, Fort Collins, Colorado, 428 pp.
  • CarbonneauP. E., S. N.Lane, and N. E.Bergeron (2004), Catchment-scale mapping of surface grain size in gravel-bed rivers using airborne digital imagery, Water Resour. Res., 40, W07202, doi:10.1029/2003WR002759.
  • Casas, M. A., S. N.Lane, R. J.Hardy, G.Benito, and P. J.Whiting (2010), Reconstruction of subgrid-scale topographic variability and its effect upon the spatial structure of three-dimensional river flow, Water Resour. Res., 46, W03519, doi:10.1029/2009WR007756.
  • Clifford, N. J., A.Robert, and K. S.Richards (1992), Estimation of flow resistance in gravel-bed rivers: A physical explanation of the multiplier of roughness length, Earth Surf. Processes Landforms, 17, 111126.
  • Danson, F. M., D.Hetherington, F.Morsdorf, B.Koetz, and B.Allgöwer (2007), Three-dimensional forest structure from terrestrial laser scanning, IEEE Geosci. Remote Sensing Lett., 4, 157160
  • Dunning, S. A., N. J.Rosser, and C. I.Massey (2010), The integration of terrestrial laser scanning and numerical modelling in landslide investigations, Q. J. Eng. Geol. Hydrogeol..43, 233247.
  • Eaton, B. C., and M. F.Lapointe (2001), Effects of large floods on sediment transport and reach morphology in the cobble-bed Sainte Marguerite River, Geomorphology, 40, 291309.
  • Entwistle, N. S., and I. C.Fuller (2009), Terrestrial laser scanning to derive surface grain size facies character of gravel bars, in Laser Scanning for the Environmental Sciences, edited by G. L.Heritage and A. R. G.Large, Wiley-Blackwell, Oxford, UK.
  • Franceschi, M., G.Teza, N.Preto, A.Pesci, A.Galgaro, and S.Girardi (2009), Discrimination between marls and limestones using intensity data from terrestrial laser scanner, ISPRS J. Photogram. Remote Sensing, 64, 522528.
  • Gao, J. (2009), Bathymetric mapping by means of remote sensing: methods, accuracy and limitations, Progress Phys. Geogr., 33, 103116.
  • Grohmann, C. H., M. J.Smith, and C.Riccomini (2010), Multi-scale analysis of surface roughness, IEEE Trans. Geosci. Remote Sensing, 99, 114.
  • Heritage, G. L., and A. R. G.Large (2009), Terrestrial Laser Scanning for the Environmental Sciences, 288 pp., Wiley-Blackwell, Chichester.
  • Heritage, G. L., and D.Hetherington (2007), Towards a protocol for laser scanning in fluvial geomorphology, Earth Surface Processes and Landforms, 32, 6674.
  • Heritage, G. L., and D. J.Milan (2009), Terrestrial laser scanning of grain roughness in a gravel-bed river, Geomorphology, 113, 411.
  • Hicks, D. M., and P. J.Mason (1991), Roughness characteristics of New Zealand rivers, in New Zealand Water Resources Survey, p. 329, DSIR Marine and Freshwater, Wellington.
  • HodgeR. A., J.Brasington, and K. S.Richards (2009a), Characterisation of grain-scale fluvial morphology using TLS, Earth Surf. Processes Landforms, 34, 954968.
  • HodgeR. A., J.Brasington, and K. S.Richards (2009b), Analysing laser-scanned digital terrain models of gravel bed surfaces: Linking morphology to sediment transport processes and hydraulics, Sedimentology, 56, 20242043.
  • Horn, B. K. P. (1987), Closed-form solution of absolute orientation using unit quaternions, J. Opt. Soc. Am. A, 4(4), 629642.
  • Horritt, M. S., and P. D.Bates (2002), Evaluation of 1-D and 2-D numerical models for predicting river flood inundation, J. Hydrol., 268, 8799.
  • James, M. R., H.Pinkerton, and L. J.Applegarth (2009), Detecting the development of active lava flow fields with a very-long-range terrestrial laser scanner and thermal imagery, Geophys. Res. Lett., 36, L22305, doi:10.1029/2009GL040701.
  • Jenness, J. S. (2004), Calculating landscape surface area from digital elevation models, Wildlife Soc. Bull., 32, 829839.
    Direct Link:
  • Lane, S. N. (2005), Roughness—time for a re-evaluation?Earth Surf. Processes Landforms, 30, 251253.
  • Lane, S. N., R. J.Hardy, L.Elliott, and D. B.Ingham (2004), Numerical modeling of flow processes over gravelly surfaces using structured grids and a numerical porosity treatment, Water Resour. Res., 40, W01302, doi:10.1029/2002WR001934.
  • Lichti, D. D. (2005), Spectral filtering and classification of terrestrial laser scanner point clouds, Photogram. Rec., 20, 218240.
  • Lichti, D. D., and S.Jamtsho (2006), Angular resolution of terrestrial laser scanners, Photogram. Rec., 21, 141160.
  • Lichti, D. D., and J.Skaloud (2010), Registration and calibration, in Airborne and Terrestrial Laser Scanning, edited by G.Vosselman and H.-G.Maas, pp. 83133, Whittles, Caithness, UK.
  • Lichti, D. D., S. J.Gordon, and M. P.Stewart (2002), Ground-based laser scanners: operations, systems and applications, Geomatica, 56, 2133.
  • Lichti, D. D., N.Pfeifer, and H.-G.Maas (2008), Editorial: ISPRS Journal of Photogrammetry and Remote Sensing theme issue “Terrestrial laser scanning,”ISPRS J. Photogram. Remote Sensing, 63, 13.
  • Marcus, W. A., and M. A.Fonstad (2010), Remote sensing of rivers: The emergence of a subdiscipline in the river sciences, Earth Surf. Processes Landforms, 35, 18671872.
  • McKean, J., D.Isak, and W.Wright (2009), Improving stream studies with a small- footprint green LiDAR, Eos Trans. AGU.90, 341342.
  • McMillan, H. K., and J.Brasington (2007), Reduced complexity strategies for modelling urban floodplain inundation, Geomorphology, 90, 226243.
  • Milan, D. J., D.Hetherington, and G. L.Heritage (2007), Application of a 3-D laser scanner in the assessment of erosion and deposition volumes and channel change in a proglacial river, Earth Surface Processes Landforms, 32, 16571674.
  • Nield, J. M., and G. F. S.Wiggs (2011), The application of terrestrial laser scanning to aeolian saltation cloud measurement and its response to changing surface moisture, Earth Surf. Processes Landforms, 36, 273278.
  • Parsons, D., J. L.Best, R. J.Hardy, R. A.Kostaschuk, S. N.Lane, and O.Orfeo (2005), The morphology and flow fields of three-dimensional dunes, Rio Paraná, Argentina: Results from simultaneous multibeam echo sounding and acoustic Doppler current profiling, J. Geophys. Res., 110, F04S03, doi:10.1029/2004JF000231.
  • Petrie, G., and C. K.Toth (2008), Introduction to laser ranging, profiling, and scanning, in Topographic Laser Ranging and Scanning: Principles and Processing, edited by J.Shan and C. K.Toth, 590 pp., CRC, Taylor & Francis, London.
  • Priestnall, G., J.Jaafar, and D.Duncan (2000), Extracting urban features from LiDAR digital surface models, Comput. Environ. Urban Syst., 24, 6578.
  • Richards, K. S., J.Brasington, and F. R. M.Hughes (2002), Geomorphic dynamics of floodplains: Ecological implications, Freshwater Biol., 47, 559579.
  • Rychkov, I., J.Brasington, D.Vericat (2012), Computational and methodological aspects of terrestrial surface analysis based on point clouds, Computers and Geosciences, 42, 6470.
  • VerduJ. M., R. J.Batalla, and J. A.Martinez-Casasnovas (2005), High-resolution grain-size characterisation of gravel bars using imagery analysis and geostatistics, Geomorphology, 72, 7393.
  • Vosselman, G., and H. G.Mass (2010), Airborne and Terrestrial Laser Scanning, Whittles, Scotland, UK.
  • Wang, C.-K., and G.-H.Huang (2012), Multi-scale geostatistical estimation of gravel-bed roughness from terrestrial and airborne laser scanning, IEEE Geosci. Remote Sensing Lett., 9, 10841088, doi:10.1109/LGRS.2012.2189351.
  • Wang, C.-K., F.-C.Wu, G.-H.Huang, and C.-Y.Lee (2011), Mesoscale terrestrial laser scanning of fluvial gravel surfaces. IEEE Geosci. Remote Sensing Lett., 8, 10751079.
  • Wehr, A., and U.Lohr (1999), Airborne laser scanning—An introduction and overview, ISPRS J. Photogram. Remote Sensing, 54, 6882.
  • Weiss, M. A. (2007), Data Structures and Algorithms in C++, 3rd ed., 586 pp., Addison-Wesley, Reading, MA.
  • WestawayR. M., S. N.Lane, and D. M.Hicks (2003), Remote survey of large-scale braided rivers using digital photogrammetry and image analysis, Int. J. Remote Sensing24, 795816.
  • Westoby, M. J., J.Brasington, N. F.Glasser, M. J.Hambrey, and J. M.Reynolds (2012), Structure-from-motion photogrammetry: A low-cost, effective tool for geoscience applications, Geomorphology, doi:10.1016/j.geomorph.2012.08.021, in press.
  • Wheaton, J., J.Brasington, S. E.Darby, and D.Sear (2010a), Accounting for uncertainty in DEMs from repeated topographic survey: improved sediment budgets, Earth Surf. Processes Landforms, 35, 136156.
  • Wheaton, J., J.Brasington, S. E.Darby, J.Mertz, G. B.Pasternack, D.Sear, and D.Vericat (2010b), Linking geomorphic changes to salmonid habitat and a scale relevant to fish, River Res. Appl., 26, 469486.
  • Williams, R. D., J.Brasington, D.Vericat, D. M.Hicks, F.Labrosse, and M.Neal (2011), Monitoring braided river change using terrestrial laser scanning and optical bathymetry, in Geomorphological Mapping: Methods and Applications, edited by M.Smith, P.Paron, and J.Griffiths, pp. 508529, Elsevier, New York.
  • Yu, D., and S. N.Lane (2006), Diffusion-based modeling of flood inundation based on sub-grid connectivity, in River Flow 2006, edited by R. M. L.Ferreira, et al., pp. 313322, Taylor Francis, London.