SEARCH

SEARCH BY CITATION

References

  • Allen, D. M., A. J.Cannon, M. W.Toews, and J.Scibek (2010), Variability in simulated recharge using different GCMs, Water Resour. Res., 46, W00F03, doi:10.1029/2009WR008932.
  • Anderson, M. P., and W. W.Woessner (1992), Applied Groundwater Modeling: Simulation of Flow and Advective Transport, 2nd edition, Academic, San Diego, Calif.
  • Barco, J., T. S.Hogue, M.Girotto, D. R.Kendall, and M.Putti (2010), Climate signal propagation in southern California aquifers, Water Resour. Res., 46, W00F05, doi:10.1029/2009WR008376.
  • Barnett, T. P., J. C.Adam, and D. P.Lettenmaier (2005), Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 438, 303309.
  • Bedekar, V., R. G.Niswonger, K.Kipp, S.Panday, M.Tonkin (2011), Approaches to the simulation of unconfined flow and perched groundwater flow in MODFLOW, Ground Water, 50, 17456584.
  • Beven, K. (1981), Kinematic subsurface stormflow, Water Resour. Res., 17(5), 14191424, doi:10.1029/WR017i005p01419.
  • Brekke, L. D., M. D.Dettinger, E. P.Maurer, and M.Anderson (2008), Significance of model credibility in estimating climate projection distributions for regional hydroclimatological risk assessments, Clim. Change, 89, 371394.
  • Brooks, R. H., and A. T.Corey (1966), Properties of porous media affecting fluid flow, J. Irrig. Drain., 101, 8592.
  • Burroughs, W. J. (2003), Weather Cycles, Real or Imaginary?, 2nd edition, Cambridge Univ., Cambridge, U. K.
  • Canadell, J., R. B.Jackson, J. R.Ehleringer, H. A.Mooney, O. E.Sala, and E.-D.Schulze (1996), Maximum rooting depths of vegetation types at the global scale, Oecologia, 108, 583595.
  • Cayan, D., M.Tyree, M.Dettinger, H.Hidalgo, T.Das, E.Maurer, P.Bromirski, N.Graham, and R.Flick (2009), Climate change scenarios and sea level rise estimates for the California 2009 Climate Change Scenarios Assessment, in Publ. CEC-500-2009-014-F, 64 p. Calif. Clim. Change Cent., Scripps Inst. Oceanogr., La Jolla, Calif.
  • Christensen, J. H., et al. (2007), Regional climate projections, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S.Solomon et al., Cambridge Univ., New York.
  • Coats, R. (2010), Climate change in the Tahoe basin: Regional trends, impacts and drivers, Clim. Change, 102, 435466.
  • Cooper, H. H., and M. I.Rorabaugh (1963) Ground-water movements and bank storage due to flood stages in surface streams, U.S. Geol. Surv. Water Suppl. Pap., 1536-J, 30 p.
  • Daly, C., R. P.Neilson, and D. L.Phillips (1994), A statistical-topographic model for mapping climatological precipitation over mountainous terrain, J. Appl. Meteorol., 33, 140158.
  • Dettinger, M. D., D. R.Cayan, M. K.Meyer, and A. E.Jeton (2004), Simulated hydrologic responses to climate variations and change in the Merced, Carson, and American River Basins, Sierra Nevada, California, 1900–2099, Clim. Change, 62, 283317.
  • Doherty, J., and R. J.Hunt (2009), Two statistics for evaluating parameter identifiability and error reduction, J. Hydrol., 366, 119127.
  • Eckhardt, K., and U.Ulbrich (2003), Potential impacts of climate change on groundwater recharge and streamflow in a central European low mountain range, J. Hydrol., 284(1–4), 244252.
  • Ferguson, I. M., and R. M.Maxwell (2010), Role of groundwater in watershed response and land surface feedbacks under climate change, Water Resour. Res., 46, W00F02, doi:10:1029/2009WR008616.
  • Flerchinger, G. N., C. L., Hanson, and J. R.Wight (1996), Modeling evapotranspiration and surface energy budgets across a watershed, Water Resour. Res.32, 25392548.
  • Gilman, D. L., F. J.Fuglister, and J. M.MitchelJr. (1963), On the power spectrum of red noise, J. Atmos. Sci., 20(2), 182184.
  • Groisman, P. Y., and D. R.Easterling (1994), Variability and trends of total precipitation and snowfall over the United States and Canada, J. Clim., 7, 184205.
  • Hamlet, A. F. and D. P.Lettenmaier (1999), Effects of climate change on hydrology and water resources in the Columbia River Basin, J. Am. Water Resour. Assoc., 35(6), 15971623.
  • Hanson, R. T., M. D.Dettinger, and M. W.Newhouse (2006), Relations between climatic variability and hydrologic time series from four alluvial basins across the southwestern United States, Hydrogeol. J., 14, 11221146.
  • Harbaugh, A. W. (2005), MODFLOW-2005, the U.S. Geological Survey modular ground-water model—The ground-water flow process, Tech. Methods, Book 6, Chap. A16, U.S. Geol. Surv., Reston, Va.
  • Hay, L. E., and M. P.Clark (2003), Use of statistically and dynamically downscaled atmospheric model output for hydrologic simulations in three mountainous basins in the western United States, J. Hydrol., 282, 5675.
  • Hay, L. E., S. L.Markstrom, and C.Ward-Garrison (2011), Watershed-scale response to climate change through the twenty-first century for selected basins across the United States, Earth Interact., 15(17), 137.
  • Hayhoe, K., et al. (2004), Emissions pathways, climate change, and impacts on California, Proc. Natl. Acad. Sci., 101, 12,42212,427.
  • Hubbert, K. R., R. C.Graham, and M. A.Anderson (2001), Soil and weathered bedrock: Components of a Jeffrey pine plantation substrate, Soil Sci. Soc. Am. J., 65, 12551262.
  • Hunt, R. J., D. E.Prudic, J. F.Walker, and M. P.Anderson (2008), Importance of unsaturated zone flow for simulating recharge in a humid climate, Ground Water, 46(4), 551560.
  • Jensen, M. E., and H. R.Haise (1963), Estimation evapotranspiration from solar radiation, J. Irrig. Drain. Div., 89, 1541.
  • Jeton, A. E., and D. K.Maurer (2007), Precipitation and runoff simulations of the Carson Range and Pine Nut Mountains, and updated estimates of ground-water inflow and the ground-water budget for basin-fill aquifers of Carson Valley, Douglas County, Nevada, and Alpine County, California, U.S. Geol. Surv. Sci. Invest. Rep.2007–5205, 56 p.
  • Jyrkama, M. I., and J. F.Sykes (2007), The impact of climate change on spatially varying groundwater recharge in the Grand River watershed (Ontario), J. Hydrol., 338, 237250.
  • Karl, T. R., and R. W.Knight (1998), Secular trends of precipitation amount, frequency, and intensity in the United States, Bull. Am. Meteorol. Soc., 79(2), 231241.
  • Kim, J. S., and S.Jain (2010), High-resolution streamflow trend analysis applicable to annual decision calendars: A western United States case study, Clim. Change, 102, 699707.
  • Koch, J. C., D. M.McKnight, and R. M.Neupauer (2011), Simulating unsteady flow, anabranching, and hyporheic dynamics in a glacial meltwater stream using a coupled surface water routing and groundwater flow model, Water Resour. Res., 47, W05530, doi:10.1029/2010WR009508.
  • Laque-Espinar, J. A., M.Chica-Olmo, and E.Pardo-Iguzquiza (2007), Climatological cycles in groundwater levels in a detritic aquifer, in Climate Change and Groundwater, edited by W.Dragoni, and B. S.Sukhija, Geol. Soc., London, Special Pub., 288, 7998.
  • Leavesley, G. H., R. W.Lichty, B. M.Troutman, and L. G.Saindon (1983), Precipitation-runoff modeling system: User's manual, U.S. Geol. Surv. Water Resour. Invest. Rep., 83-4238, 207 p.
  • Liang, X., D.Lettenmaier, E. F.Wood, and S. J.Burges (1994), A simple hydrologically based model of land surface water and energy fluxes for general circulation models, J. Geophys. Res., 99(14), 415428.
  • Luce, C. H., and Z. A.Holden (2009), Declining annual streamflow distributions in the Pacific Northwest United States, 1948–2006, Geophys. Res. Lett., 36, L16401, doi:10.1029/2009GL039407.
  • Mantua, N., I.Tohver, and A.Hamlet (2010), Climate change impacts on streamflow extremes and summertime stream temperature and their possible consequences for freshwater salmon habitat in Washington State, Clim. Change, 102, 187223.
  • Markstrom, S. L., R. G.Niswonger, R. S.Regan, D. E.Prudic, and P. M.Barlow (2008), GSFLOW-Coupled Ground-water and Surface-water FLOW model based on the integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005), U.S. Geol. Surv. Tech. Methods, 6-D1, 240 p.
  • Markstrom, S. L., et al. (2012), Integrated watershed-scale response to climate change for selected basins across the United States:U.S. Geol. Surv. Sci. Invest. Rep., 2011-5077, 143 p.
  • Maurer, D. K., and D. L.Berger (1997), Subsurface flow and water yield from watersheds tributary to Eagle Valley Hydrographic area, west-central Nevada, U.S. Geol. Surv. Water Resour. Invest. Rep., 97-4191, 56 p.
  • Maurer, D. K., D. L.Berger, and D. E.Prudic (1996), Subsurface flow to Eagle Valley from Vicee, Ash, and Kings Canyons, Carson City, Nevada, estimated from Darcy's law and the chloride-balance method, U.S. Geol. Surv. Water Resour. Invest. Rep., 96-4088, 74 p.
  • Maurer, E. P., and H. G.Hidalgo (2008), Utility of daily vs. monthly large-scale climate data: An intercomparison of two statistical downscaling methods, Hydrol. Earth Syst. Sci., 12, 551563.
  • Maurer, E. P., L. D.Brekke, and T.Pruitt (2010), Contrasting lumped and distributed hydrology models for estimating climate change impacts on California Watersheds, J. Am. Water Resour. Assoc., 46(5), 10241035.
  • Maxwell, R. M., and S. J.Kollet (2008), Interdependence of groundwater dynamics and land energy feedbacks under climate change, Nat. Geosci., 1, 665669.
  • McDonald, M. G., and W. W.Harbaugh (1988), A modular three-dimensional finite-difference ground-water flow model, Book 6, Chapter A1,U.S. Geol. Surv. Tech. Water Resour. Invest., 586 p.
  • Merritt, M. L., and L. F.Konikow (2000), Documentation of a computer program to simulate lake-aquifer interaction using the MODFLOW groundwater flow model and the MOC3D solute-transport model, U.S. Geol. Surv.Water Resour. Invest. Rep.00-4167, 146 pp.
  • Middelkoop, H., K.Daamen, D.Gellens, W.Grabs, J. C. J.Kwadijk, H.Lang, B. W. A. H.Parmet, B.Schadler, J.Schulla, and K.Wilke (2001), Impact of climate change on hydrological regimes and water resources management in the Rhine Basin, Clim. Change, 49, 105128.
  • Mote, W. P., A. F.Hamlet, M. P.Clark, and D. P.Lettenmaier (2005), Declining mountain snowpack in western North America, Bull. Am. Meteorol. Soc., 86, 3949.
  • Nash, J. E., and J. V.Sutcliffe (1970), River flow forecasting through conceptual models part 1-A discussion of principles, J. Hydrol., 10(3), 282290.
  • Niswonger, R. G., and D. E.Prudic (2004), Modeling variably saturated flow using kinematic waves in MODFLOW, in Groundwater Recharge in a Desert Environment-The Southwestern United States, Water Sci. Appl., vol. 9, edited by J. F.Hogan, F. M.Phillips, and B. R.Scanlon, pp. 101112, AGU, Washington, D. C.
  • Niswonger, R. G., and D. E.Prudic (2005), Documentation of the streamflow-routing (SFR2) package to include unsaturated flow beneath streams—A modification to SFR1, U.S. Geol. Surv. Tech. Methods, 6–A13, 51 p.
  • Niswonger, R. G., D. E.Prudic, and R. S.Regan (2006), Documentation of the Unsaturated-Zone Flow (UZF1) Package for modeling unsaturated flow between the land surface and the water table with MODFLOW-2005,U.S. Geol. Surv. Tech. Methods, Book 6, Chap. A19, 62 pp.
  • Niswonger, R. G., D. E.Prudic, G. E.Fogg, D. A.Stonestrom, and E. M.Buckland (2008), Method for estimating seepage loss and streambed hydraulic conductivity in intermittent and ephemeral streams, Water Resour. Res., 44, W05418, doi:10.1029/2007WR006626.
  • Niswonger, R. G., S.Panday, and I.Motomu (2011), MODFLOW-NWT, A Newton formulation for MODFLOW-2005, U.S. Geol. Surv. Tech. Methods, 6–A37, 44 p.
  • Panofsky, H. A., and G. W.Brier (1968), Some Applications of Statistics to Meteorology, Pennsylvania State University, University Park, 224 pp.
  • Perry, C. A. (2006), Midwestern streamflow, precipitation, and atmospheric vorticity influenced by Pacific sea-surface temperatures and total solar-irradiance variations, Int. J. Clim., 26(2), 207218.
  • Pinder, G. F., and S. P.Sauer (1971), Numerical simulation of flood wave modification due to bank storage effects, Water Resour. Res., 7(1), 6370.
  • Plume, R. W., M. L.Tumbusch, and T. L.Welborn (2009), Hydrogeology of the Lake Tahoe Basin, California and Nevada, U.S. Geol. Surv. Sci. Invest. Map, 3063, 1 sheet.
  • Prudhomme, C., D.Jakob, and C.Svensson (2003), Uncertainty and climate change impact on the flood regime of small UK catchments, J. Hydrol., 277(1–2), 123.
  • Scibek, J., and D. M.Allen (2006), Modeled impacts of predicted climate change on recharge and groundwater levels, Water Resour. Res., 42, W11405, doi:10.1029/2005WR004742.
  • Scibek, J., D. M.Allen, A. J.Cannon, and P. H.Whitfield (2007), Groundwater-surface water interaction under scenarios of climate change using a high-resolution transient groundwater model, J. Hydrol., 333, 165181.
  • Singleton, M. J., and J. E.Moran (2010), Dissolved noble gas and isotopic tracers reveal vulnerability of groundwater in a small, high elevation catchment to predicted climate change, Water Resour. Res., 46, W00F06, doi:10.1029/2009WR008718.
  • Smakhtin, V. U. (2001), Low flow hydrology: A review, J. Hydrol., 240, 147186.
  • Smith, R. E. (1983), Approximate sediment water movement by kinematic characteristics, Soil Sci. Soc. Am., J., 47, 38.
  • Stone, E. L., and P. J.Kalisz (1991), On the maximum extent of tree roots, For. Ecol. Manage., 46(1–2), 59102.
  • Sulis, M., C.Paniconi, C.Rivard, R.Harvey, and D.Chaumont (2011), Assessment of climate change impacts at the catchment scale with a detailed hydrological model of surface-subsurface interactions and comparison with a land surface model, Water Resour. Res., 47, W01513, doi:10.1029/2010WR009167.
  • Tague, C., and G. E.Grant (2009), Groundwater dynamics mediate low-flow response to global warming in snow dominated alpine regions, Water Resour. Res., 45, W07421, doi:10.1029/2008WR007179.
  • Vaccaro, J. J. (1992), Sensitivity of groundwater recharge estimates to climate variability and change, Columbia Plateau, Washington, J. Geophys. Res., 97(D3), 28212833.
  • Wilby, R. L., and M. D.Dettinger (2000), Streamflow changes in the Sierra Nevada, California, simulated using statistically downscaled general circulation model output, in Linking Climate Change to Land Surface Change, Adv. Global Change Res., vol. 6, edited by S.McLaren and D.Kniveton, pp. 99121, Kluwer Acad., New York.
  • Wilby, R. L., and I.Harris (2006), A framework for assessing uncertainties in climate change impacts: Low-flow scenarios for the River Thames, UK, Water Resour. Res., 42, W02419, doi:10.1029/2005WR004065.
  • Witty, J. H., R. C.Graham, K. R.Hubbert, J. A.Doolittle, and J. A.Wald (2003), Contributions of water supply from the weathered bedrock zone to forest soil quality, Geodema, 114, 389400.