SEARCH

SEARCH BY CITATION

References

  • Akin, J. E., and J.Counts (1969), On rational approximations to the inverse Laplace transform, SIAM J. Appl. Math., 17(6), 10351040.
  • Bandaragoda, C., and B. T.Neilson (2011), Increasing parameter certainty and data utility through multi-objective calibration of a spatially distributed temperature and solute model, Hydrol. Earth Syst. Sci., 15, 15471561, doi:10.5194/hess-15-1547-2011.
  • Chapra, S. C. (1997), Surface Water Quality Modeling, McGraw-Hill, New York.
  • Curtiss, J. H. (1942), A note on the theory of moment generating functions, Ann. Math. Stat., 13(4), pp. 430433.
  • De Hoog, F. R., J. H.Knight, and A. N.Stokes (1982), An improved method for numerical inversion of Laplace transforms, SIAM J. Sci. Stat. Comput., 3(3), 357366.
  • Euler, L. (1739), De fractionibus continuis observatione, Comm. Acad. Sci Imper. Petropol, 11, 3281.
  • Euler, L. (1785), De transformatione serierum in fractiones continuas; ubi simul hac theoria non mediocriter complebatur, Opuscala analytica. Petropol, II, 98137.
  • Fischer, H. B. (1979), Mixing in Inland and Coastal Waters, Academic, New York.
  • Heavilin, J., and B. T.Neilson (2012), An analytical solution to main channel heat transport with surface heat flux, Adv. Water Resour., 47, 6775, doi:10.1016/j.advwatres.2012.06.006.
  • Khovanskii, A. N. (1963), The Application of Continued Fractions and Their Generalization to Problems in Approximation Theory, P. Noordhoff, Groningen, Netherlands.
  • Longman, I. M., and M.Sharir (1971), Laplace transform inversion of rational functions, Geophys. J. R. Astron. Soc., 25, 299305.
  • Luke, L. Y. (1978), A method for the inversion of the Laplace transform, J. Franklin Inst., 305(5), 266273.
  • Neilson, B. T., D. K.Stevens, S. C.Chapra, and C.Bandaragoda (2009), Data collection methodology for dynamic temperature model testing and corroboration, Hydrol. Processes, 23(20), 29022914, doi:10.1002/hyp.7381.
  • Neilson, B. T., S. C.Chapra, D. K.Stevens, and C.Bandaragoda (2010a), Two-zone transient storage modeling using temperature and solute data with multiobjective calibration: 1. Temperature, Water Resour. Res., 46, W12520, doi:10.1029/2009WR008756.
  • Neilson, B. T., D. K.Stevens, S. C.Chapra, and C.Bandaragoda (2010b), Two-zone transient storage modeling using temperature and solute data with multiobjective calibration: 2. Temperature and solute, Water Resour. Res., 46, W12521, doi:10.1029/2009WR008759.
  • Perron, O. (1913), Die Lehre von dem Kettenbrücken, B. G. Teubner, Berlin.
  • Sandifer, C. E. (2007), The early mathematics of Leonard Euler, De Fractionibus Continuis Dissertatio, pp. 234–248, The Mathematical Association of America; original reference Comm. Acad. Sci. Imp. Pertopol.9, 98137 (1737).
  • Stedall, J. A. (2000), Catching Proteus: The collaborations of Wallis and Brouncker. I. Squaring the circle, Notes Rec. R. Soc. London, 54(3), 293316.
  • Wallis, J. (1655), Arithmetica Infinitorum, Oxford Univ., Oxford, England.
  • Watson, G. N., and O.Perron (1957), Review of: Die Lehre von den Kettenbrüchen. Vol. I: Elementary continued fractions, Math. Gaz., 41(338), 309310.
  • Weinberger, H. F. (1965), A First Course in Partial Differential Equations With Complex Variables and Transform Methods, Blaisdell, New York.