SEARCH

SEARCH BY CITATION

References

  • Ahuja, L. R., M. H.Nachabe, and R.Rockiki (2008), Soils: Field capacity, in Encyclopedia of Water Science, 2nd ed., edited by S. W.Trimble, B. A.Stewart, and T. A.Howell, pp. 11281131, CRC Press, Boca Raton, Fla.
  • Alauzis, M. V., M. J.Mazzarino, E.Raffaele, and L.Roselli (2004), Wildfires in NW Patagonia: Long-term effects on a Nothofagus forest soil, For. Ecol. Manage., 192, 131142.
  • Andreu, V., A. C.Imeson, and J. L.Rubio (2001), Temporal changes in soil aggregates and water erosion after a wildfire in a Mediterranean pine forest, Catena, 44, 6984.
  • Are, K. S., G. A.Oluwatosin, O. D.Adeyolanu, and A. O.Oke (2009), Slash and burn effect on soil quality of an Alfisol: Soil physical properties, Soil Tillage Res., 103, 410.
  • Arya, L. M., F. J.Leij, M.Th.vanGenuchten, and P. J.Shouse (1999), Scaling parameter to predict the soil water characteristic from particle-size distribution data, Soil Sci. Soc. Am. J., 63, 510519.
  • Bachmann, J., M.Deurer, and G.Arye (2007), Modeling water movement in heterogeneous water-repellent soil: 1. Development of a contact angle dependent water-retention model, Vadose Zone J., 6, 436445.
  • Badìa, D., and C.Martì (2003), Plant ash and heat intensity effects on chemical and physical properties of two contrasting soils, Arid Land Res. Manage., 17, 2341.
  • Baldock, J. A., and R. J.Smernik (2002), Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood, Org. Geochem., 33, 10931109.
  • Birkeland, P. W., R. R.Shroba, S. F.Burns, A. B.Price, and P. J.Tonkin (2003), Integrating soils and geomorphology in mountains—An example from the Front Range of Colorado, Geomorphology, 55, 329344.
  • Biswas, A., J. D.Blum, and G. J.Keeler (2008), Mercury storage in surface soils in a central Washington forest and estimated release during the 2001 Rex Creek Fire, Sci. Total Environ., 404, 129138.
  • Bodí, M. B., J.Mataix-Solera, S. H.Doerr, and A.Cerda (2011), The wettability of ash from burned vegetation and its relationship to Mediterranean plant species type, burn severity and total organic content, Geoderma, 160, 599607.
  • Boix-Fayos, C. (1997), The roles of texture and structure in the water retention capacity of burnt Mediterranean soils with varying rainfall, Catena, 31, 219236.
  • Cerdà, A., A. C.Imeson, and A.Calvo (1995), Fire and aspect induced differences on the erodibility and hydrology of soils at La Costera, Valencia, southeast Spain, Catena, 24, 289304.
  • Certini, G. (2005), Effects of fire on properties of forest soils: A review, Oecologia, 143, 110.
  • Dane, J. H., and J. W.Hopmans (2002a), Hanging water column, in Methods of Soil Analysis, part 4: Physical Methods, Soil Science Society of America Book Series No. 5, edited by J. H.Dane and G. C.Topp, pp. 680683, Soil Sci. Soc. of America, Madison, Wis.
  • Dane, J. H., and J. W.Hopmans (2002b), Pressure plate extractor, in Methods of Soil Analysis, part 4: Physical Methods, Soil Science Society of America Book Series No. 5, edited by J. H.Dane and G. C.Topp, pp. 688690, Soil Sci. Soc. of America, Madison, Wis.
  • Dean, W. E., Jr. (1974), Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: Comparison with other methods, J. Sed. Petrol., 44, 242248.
  • DeBano, L. F. (2000), The role of fire and soil heating on water repellence in wildland environments: A review, J. Hydrol., 231, 195206.
  • DeBano, L. F., D. G.Neary, and P. F.Ffolliott (1998), Fire's Effect on Ecosystems, Wiley, New York.
  • Dekker, L. W., S. H.Doerr, K.Oostindie, A. K.Ziogas, and C. J.Ritsema (2001), Water repellency and critical soil water content in a dune sand, Soil Sci. Soc. Am. J., 65, 16671674.
  • deJonge, L. W., P.Moldrup, and O. H.Jacobsen (2007), Soil-water content dependency of water repellency in soils: Effect of crop type, soil management, and physical-chemical parameters, Soil Sci., 172, 577588.
  • Ebel, B. A., J. A.Moody, and D. A.Martin (2012), Hydrologic conditions controlling runoff generation immediately after wildfire, Water Resour. Res., 48, W03529, doi:10.1029/2011WR011470.
  • Famiglietti, J. S., J. W.Rudnicki, and M.Rodell (1998), Variability in surface moisture content along a hillslope transect: Rattlesnake Hill, Texas, J. Hydrol., 210, 259281.
  • Fernàndez, I., A.Cabaneiro, and T.Carballas (1997), Organic matter changes immediately after a wildfire in an Atlantic forest soil and comparison with laboratory soil heating, Soil Biol. Biochem., 29, 111.
  • Fourmile Emergency Stabilization Team (FEST) (2010), Fourmile emergency stabilization burned area report, 14 pp., Boulder County, Colo. [Available at http://www.bouldercounty.org/find/library/environment/fest4mileburnedareareport.pdf.]
  • Franzmeier, D. P., E. J.Pedersen, T. J.Longwell, J. G.Byrne, and C. K.Losche (1969), Properties of some soils in the Cumberland Plateau as related to slope aspect and position, Soil Sci. Soc. Am. J., 33, 755761.
  • Furman, A. (2008), Modeling coupled surface-subsurface flow processes: A review, Vadose Zone J., 7, 741756, doi:10.2136/VZJ2007.0065.
  • Gable, D. J. (1980), Geologic map of the Gold Hill quadrangle, Boulder County, Colorado, Geologic Quadrangle Map GQ-1525, scale 1:24,000, U.S. Geol. Surv, Reston, Va.
  • García-Corona, R., E.Benito, E.De Blas, and M. E.Varela (2004), Effects of heating on some soil physical properties related to its hydrological behavior in two north-western Spanish soils, Int. J. Wildland Fire, 13, 195199.
  • GeeG. W., and D.Or (2002), Particle size analysis, in Methods of Soil Analysis, part 4; Physical methods, Soil Science Society of America Book Series No. 5, edited by J. H.Dane and G. C.Topp, pp. 255293, Soil Sci. Soc. of America, Madison, Wis.
  • Gee, G. W., M. D.Campbell, G. S.Campbell, and J. H.Campbell (1992), Rapid measurement of low soil water potentials using a water activity meter, Soil Sci. Soc. Am. J., 56, 10681070.
  • Geroy, I., M. M.Gribb, H. P.Marshall, D. G.Chandler, S. G.Benner, and J. P.McNamara (2011), Aspect influences on soil water retention and storage, Hydrol. Process., 25, 38363842.
  • Giovannini, G., and S.Lucchesi (1997), Modifications induced in soil physico-chemical parameters by experimental fires at different intensities, Soil Sci., 162, 479486.
  • Giovannini, G., S.Lucchesi, and M.Giachetti (1988), Effects of heating on some physical and chemical parameters related to soil aggregation and erodibility, Soil. Sci., 146, 255261.
  • Goebel, M.-O., J.Bachmann, S. K.Woche, W. R.Fischer, and R.Horton (2004), Water potential and aggregate size effects on contact angle and surface energy, Soil Sci. Soc. Am. J., 68, 383393.
  • González-Pelayo, O., V.Andreu, J.Campo, E.Gimeno-García, and J. L.Rubio (2006), Hydrological properties of a Mediterranean soil burned with different intensities, Catena, 68, 186196.
  • González-Pérez, J. A., F. J.González-Vila, G.Almendros, and H.Knicker (2004), The effect of fire on soil organic matter—A review, Environ. Int., 30, 855870.
  • Graham, R., M.Finney, C.McHugh, J.Cohen, D.Calkin, R.Stratton, L.Bradshaw, and N.Nikolov (2012), Fourmile Canyon fire findings, Gen. Tech. Rep. RMRS-GTR-289, 110 pp., U.S. Dept. of Agriculture, Forest Service, Rocky Mountain Research Station, Fort Collins, Colo.
  • Gupta, S. C., and W. E.Larson (1979), Estimating soil water retention characteristics from particle-size distribution, organic matter percent, and bulk density, Water Resour. Res., 15, 16331635.
  • Guy, H. P. (1969), Laboratory theory and methods for sediment analysis, in U.S. Geological Survey Techniques of Water-Resources Investigations, edited by H.Guy, book 5, chap. C1, 58 pp.
  • Hatten, J. A., and Zabowski, D. (2009), Changes in soil organic matter pools and carbon mineralization as influenced by fire severity, Soil Sci. Soc. Am. J., 73, 262273.
  • Heiri, O., A. F.Lotter, and G.Lemcke (2001), Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results, J. Paleolimnol., 25, 101110.
  • Jamison, V. C. (1953), Changes in air-water relationships due to structural improvement of soils, Soil Sci., 76, 143151.
  • Karunarathna, A. K., K.Kawamoto, P.Moldrup, L. W.deJonge, and T.Komatsu (2010a), A simple beta-function model for soil-water repellency as a function of water and organic carbon contents, Soil Sci., 175, 461468.
  • Karunarathna, A. K., P.Moldrup, K.Kawamoto, L. W.deJonge, and T.Komatsu (2010b), Two-region model for soil water repellency as a function of matric potential and water content, Vadose Zone J., 9, 719730.
  • Keeley, J. E. (2009), Fire intensity, fire severity and burn severity: A brief review and suggested usage, Int. J. Wildland Fire, 18, 116126.
  • Kitzberger, T., E.Raffaele, K.Heinemann, M. J.Mazzarino, and P.Harcombe (2005), Effects of fire severity in a north Patagonian subalpine forest, J. Veget. Sci., 16, 512.
  • Kobayashi, M., S.Onodera, and M.Kato (1996), Effect of water repellency on a water characteristic curve of forest soil [in Japanese with English summary]. J. Jpn. Soc. Hydrol. Water Resour., 9, 8891.
  • Kollet, S. J., and R. M.Maxwell (2006), Integrated surface- groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model, Adv. Water Resour., 29, 945958.
  • Koorevaar, P., G.Menelik, and C.Dirksen (1983), Elements of Soil Physics (Developments in Soil Science), Elsevier, Amsterdam.
  • Lewis, S. A., J. Q.Wu, and P. R.Robichaud (2006), Assessing burn severity and comparing soil water repellency, Hydrol. Process., 20, 116.
  • Mallik, A. U., C. H.Gimingham, and A. A.Rahman (1984), Ecological effects of heather burning, I. Water infiltration, moisture retention and porosity of surface soils, J. Ecol., 72, 767776.
  • Mataix-Solera, J., A.Cerdà, V.Arcenegui, A.Jordán, and L. M.Zavala (2011), Fire effects on soil aggregation: A review, Earth Sci. Rev., 109, 4460.
  • Meyer, P. D., and G.Gee (1999), Flux-based estimation of field capacity, J. Geotech. Geoenviron. Eng., 125, 595599.
  • Miltner, A., and W.Zech (1997), Effects of minerals on the transformation of organic matter during simulated fire-induced pyrolysis, Org. Geochem., 26, 175182.
  • Miyata, S., K.Kosugi, T.Gomi, Y.Onda, and T.Mizuyama (2007), Surface runoff as affected by soil water repellency in a Japanese cypress forest, Hydrol. Process., 21, 23652376, doi:10.1002/hyp.6749.
  • Molina, M. J., and P.Sanroque (1996), Impact of forest fires on desertification processes: A review in relation to soil erodibility, in Soil Degradation and Desertification in Mediterranean Environments, edited by J. L.Rubio and A.Calvo, pp. 145163, Geoforma Ediciones, Logrono, Spain.
  • Moody, J. A., and B. A.Ebel (2012), Hyper-dry conditions provide new insights into the cause of extreme floods after wildfire, Catena, 93, 5863, doi:10.1016/j.catena.2012.01.006.
  • Moody, J. A., and P.Nyman (2012), Variations in detachment rates with soil depth after wildfire, Scientific Investigations Rep. 2012-5233, U.S. Geol. Surv., Denver, Colo.
  • Moody, J. A., J. D.Smith, and B. W.Ragan (2005), Critical shear stress for erosion of cohesive soils subjected to temperatures typical of wildfires, J. Geophys. Res., 110, F01004, doi:10.1029/2004JF000141.
  • Moreland, D. C., and R. E.Moreland (1975), Soil Survey of Boulder County Area, Colorado, 91 pp., Natural Resources Conservation Service, U. S. Dept. of Agric., Washinton, D. C.
  • Nimmo, J. R. (1997), Modeling structural influences on soil water retention, Soil Sci. Soc. Am. J., 61, 712719.
  • Nimmo, J. R. (2009), Vadose water, in Encyclopedia of Inland Waters, vol. 1, edited by G. E.Likens, pp. 766777, Elsevier, Oxford.
  • Nimmo, J. R., and E. E.Miller (1986), The temperature dependence of isothermal moisture-vs.-potential characteristics of soils, Soil Sci. Soc. Am. J., 50, 11051113.
  • Nimmo, J. R., and K. A.Winfield (2002), Miscellaneous methods [water retention and storage], in Methods of Soil Analysis, part 4: Physical Methods, Soil Science Society of America Book Series No. 5, edited by J. H.Dane and G. C.Topp, pp. 710714, Soil Sci. Soc. of America, Madison, Wis.
  • Nimmo, J. R., W. N.Herkelrath, and A. M.Laguna Luna (2007), Physically based estimation of soil water retention from textural data: General framework, new models, and streamlined existing models, Vadose Zone J., 6, 766773.
  • Oswald, B. P., D.Davenport, and L. F.Neuenschwander (1999), Effects of slash pile burning on the physical and chemical soil properties of Vassar soils, J. Sustain. Forest., 8, 7586.
  • Parsons, A., P. R.Robichaud, S. A.Lewis, C.Napper, and J. T.Clark (2010), Field guide for mapping post-fire soil burn severity, General Tech. Rep. RMRS-GTR-243, 49 pp., Rocky Mountain Research Station, Fort Collins, Colo.
  • Pierson, F. B., D. H.Carlson, and K. E.Spaeth (2002), Impacts of wildfire on soil hydrologic properties of steep sagebrush-steppe rangeland, Int. J. Wildland Fire, 11, 145151.
  • Qu, Y., and C. J.Duffy (2007), A semidiscrete finite volume formulation for multiprocess watershed simulation, Water Resour. Res., 43, W08419, doi:10.1029/2006WR005752.
  • Raison, R. J., P. K.Khanna, and P. V.Woods (1984), Mechanisms of element transfer to the atmosphere during vegetation fires, Can. J. For. Res., 15, 132140.
  • Regalado, C. M., and A.Ritter (2005), Characterizing water dependent soil repellency with minimal parameter requirement, Soil Sci. Soc. Am. J., 69, 19551966.
  • Robertson, G. P., K. M.Klingensmith, M. J.Klug, E. A.Paul, J. R.Crum, and B. G.Ellis (1997), Soil resources, microbial activity, and primary production across an agricultural ecosystem, Ecol. Appl., 7, 158170.
  • Romano, N., and A.Santini (2002), Field water capacity, in Methods of Soil Analysis, part 4: Physical Methods, Soil Science Society of America Book Series No. 5, edited by J. H.Dane and G. C.Topp, pp. 721738, Soil Sci. Soc. of America, Madison, Wis.
  • Rossi, C., and J. R.Nimmo (1994), Modeling of soil water retention from saturation to oven dryness, Water Resour. Res., 30, 701708.
  • Russo, D., and M.Bouton (1992), Statistical analysis of spatial variability in unsaturated flow parameters, Water Resour. Res., 28, 19111925.
  • Salter, P. J., G.Berry, and J. B.Williams (1966), The influence of texture on the moisture characteristic of soils: III. Quantitative relationships between particle size, composition and available-water capacity, J. Soil Sci., 17, 9398.
  • Sankey, J. B., M. J.Germino, T. T.Sankey, and A. N.Hoover (2012), Fire effects on the spatial patterning of soil properties in sagebrush steppe, USA: A meta-analysis, Int. J. Wildland Fire, 21, 545556.
  • Scott, A. C. (2010), Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis, Palaeogeogr. Palaeoclimatol. Paleoecol., 291, 1139.
  • Sherriff, R. L., and T. T.Veblen (2007), A spatially-explicit reconstruction of historical fire occurrence in the ponderosa pine zone of the Colorado Front Range, Ecosystems, 10, 311323.
  • Silva, J. S., F. C.Rego, and S.Mazzoleni (2006), Soil water dynamics after fire in a Portuguese Shrubland, Int. J. Wildland Fire, 15, 99111.
  • Šimůnek, J., M.Th.vanGenuchten, and M.Šejna (2008), Development and applications of the HYDRUS and STANMOD software packages and related codes, Vadose Zone J., 7, 587600, doi:10.2136/VZJ2007.0077.
  • Stoof, C. R., J. G.Wesseling, and C. J.Ritsema (2010), Effects of fire and ash on soil water retention, Geoderma, 159, 276285.
  • Sudicky, E. A., J. P.Jones, Y.-J.Park, A. E.Brookfield, and D.Colautti (2008), Simulating complex flow and transport dynamics in an integrated surface subsurface modeling framework, Geosci. J., 12, 107122.
  • Twarakavi, N. K. C., M.Sakai, and J.Šimůnek (2009), An objective analysis of the dynamic nature of field capacity, Water Resour. Res., 45, W10410, doi:10.1029/2009WR007944.
  • Ulery, A. L., and R. C.Graham (1993), Forest fire effects on soil color and texture, Soil Sci. Soc. Am. J., 57, 135140.
  • United States Department of Agriculture (USDA) (2010), Soil Survey Staff, Natural Resource Conservation Service, Web Soil, [Available at http://www.websoilsurvey.nrcs.usda.gov/, U. Dept. of Agric., Washington, D. C.; accessed 29 Nov. 2010].
  • vanGenuchten, M. T. (1980), A closed-form equation for predicting the hydraulic conductivity of unsaturated soil, Soil Sci. Soc. Am. J., 44, 892898.
  • vanGenuchten, M. T., F. J.Leij, and S. R.Yates (1991), The RETC code for quantifying the hydraulic functions of unsaturated soils, Rep. EPA/600/2091/065, Robert S. Kerr Environ. Res. Lab., Off. of Res. and Dev., U.S. Environmental Protection Agency, Ada, Oklahoma.
  • VanderKwaak, J. E. (1999), Numerical simulation of flow and chemical transport in integrated surface-subsurface hydrologic systems, Ph.D. Dissertation, University of Waterloo, Waterloo, Belgium.
  • Veblen, T. T., and D. C.Lorenz (1991), The Colorado Front Range, A Century of Ecological Change, 186 pp., Univ. Utah Press, Salt Lake City, Utah.
  • Veblen, T. T., T.Kitzberger, and J.Donnegan (2000), Climatic and human influences on fire regimes in ponderosa pine forests in the Colorado Front Range, Ecol. Appl., 10, 11781195.
  • Vereecken, H., J.Maes, J.Feyen, and P.Darius (1989), Estimating the soil moisture retention characteristic from texture, bulk density and carbon content, Soil Sci., 148, 389403.
  • White, C. S. (2011), Homogenization of the soil surface following fire in semiarid grasslands, Rangeland Ecol. Manage., 64, 414418.
  • Winfield, K. A. (2003), Spatial variability of sedimentary interbed properties near the Idaho Nuclear Technology and Engineering Center at the Idaho National Environmental and Engineering Laboratory, U.S Geol. Surv. Water Resources Investigations Rep. 03-4142, U.S. Geol. Surv., Idaho Falls, Idaho.
  • Woods, S. W., and V. N.Balfour (2010), The effects of soil texture and ash thickness on the post-fire hydrological response from ash covered soils, J. Hydrol., 393, 274286, doi:10.1016/j.jhydrol.2010.08.025.