SEARCH

SEARCH BY CITATION

References

  • Bartalis, Z., V. Naeimi, S. Hasenauer, and W. Wagner (2008), ASCAT soil moisture product handbook, ASCAT Soil Moisture Rep. Ser. 15, Inst. of Photogramm. and Remote Sens., Vienna Univ. of Technol., Austria.
  • Belmans, C., J. G. Wesseling, and R. A. Feddes (1983), Simulation of water balance of a cropped soil: SWATRE, J. Hydrol., 63, 271286.
  • Brantley, S. L., et al. (2006), Frontiers in exploration of the critical zone: Report of a workshop sponsored by the National Science Foundation (NSF), 30 pp., Newark, Del., 24–26 Oct., 2005.
  • Cai, X., D. C. McKinney, and L. S. Lasdon (2001), Solving nonlinear water management models using a combined genetic algorithm and linear programming approach, Adv. Water Resour., 24, 667676.
  • Carroll, D. L. (1998), GA Fortran Driver version 1.7, CU Aerospace, IL . [Available at http://www.cuaerospace.com/carroll/ga.html.]
  • Carsel, R. F., and R. S. Parrish (1988), Developing joint probability-distributions of soil-water retention characteristics, Water Resour. Res., 24, 755769.
  • Chan-Hilton, A. B., and T. B. Culver (2000), Constraint handling for genetic algorithms in optimal remediation design, J. Water Resour. Plan. Manage, 126(3), 128137.
  • Cieniewski, S. E., J. W. Eheart, and S. Ranjithan (1995), Using genetic algorithms to solve a multi-objective groundwater monitoring problem, Water Resour. Res., 31, 399409.
  • Crow, W. T., and E. F. Wood (2002), The value of coarse-scale soil moisture observations for regional surface energy balance modeling, J. Hydrometeorol., 3, 467482.
  • Crow, W. T., D. Ryu, and J. S. Famiglietti (2005), Upscaling of field-scale soil moisture measurements using a distributed land surface model, Adv. Water Resour., 28, 114, doi:10.1016/j.advwatres.2004.10.004.
  • Das, N. N., and B. P. Mohanty (2006), Root zone soil moisture assessment using remote sensing and vadose zone modeling, Vadose Zone J., 5, 296307.
  • Das, N. N., D. Entekhabi, and E. G. Njoku (2011), An algorithm for merging SMAP radiometer and radar data for high-resolution soil moisture retrieval, IEEE Trans. Geosci. Remote Sens., 49, 15041512.
  • Droogers, P., Bastiaanssen, W. G. M., Beyazgül, M., Kayam, Y., Kite, G. W., and H. Murray-Rust(2000), Distributed agro-hydrological modeling of an irrigation system in Western Turkey, Agric. Water Manage., 43, 183202.
  • Entekhabi, D., et al. (2010), The Soil Moisture Active Passive (SMAP) mission, Proc. IEEE, 98, 704716.
  • Ferreira, M. E., L. G. Ferreira, E. E. Sano, and Y. E. Shimabukuro (2007), Spectral linear mixture modelling approaches for land cover mapping of tropical savanna areas in Brazil, Int. J. Remote Sens., 28, 413429.
  • Goldberg, D. E. (1989), Genetic Algorithms in Search and Optimization and Machine Learning, Addison-Wesley, Washington, D. C.
  • Goldberg, D. E. (2002), The Design of Innovation: Lessons From and for Competent Genetic Algorithms, Kluwer Acad., Norwell, Mass.
  • Holben, B. N., and Y. E. Shimabukuro (1993), Linear mixing applied to coarse spatial resolution data from multispectral satellite sensors, Int. J. Remote Sens., 14, 22312240.
  • Holland, J. H. (1975), Adaptation in Natural and Artificial Systems, Univ. of Mich. Press, Ann Arbor.
  • Hollinger, S. E., and S. A. Isard (1994), A soil moisture climatology of Illinois, J. Clim., 7, 822833.
  • Ines, A. V. M., and P. Droogers (2002), Inverse modeling in estimating soil hydraulic functions: A genetic algorithm approach, Hydrol. Earth Syst. Sci., 6(1), 4965.
  • Ines, A. V. M., and K. Honda (2005), On quantifying agricultural and water management practices from low spatial resolution RS data using genetic algorithms: A numerical study for mixed-pixel environment, Adv. Water Resour., 28, 856870.
  • Ines, A. V. M., and B. P. Mohanty (2008a), Parameter conditioning with a noisy Monte Carlo genetic algorithm to estimate effective soil hydraulic properties from space, Water Resour. Res., 44, W08441, doi:10.1029/2007WR006125.
  • Ines, A. V. M., and B. P. Mohanty (2008b), Near-surface soil moisture assimilation to quantify effective soil hydraulic properties using genetic algorithm: 1. Conceptual modeling, Water Resour. Res., 44, W06422, doi:10.1029/2007WR005990.
  • Ines, A. V. M., and B. P. Mohanty (2008c), Near-surface soil moisture assimilation to quantify effective soil hydraulic properties under different hydro-climatic conditions, Vadose Zone J., 7, 3952.
  • Ines, A. V. M., and B. P. Mohanty (2009), Near-surface soil moisture assimilation for quantifying effective soil hydraulic properties using genetic algorithm: 2. With air-borne remote sensing during SGP97 and SMEX02, Water Resour. Res., 45, W01408, doi:10.1029/2008WR007022.
  • Ines, A. V. M., K. Honda, A. D. Gupta, P. Droogers, and R. S. Clemente (2006), Combining remote sensing-simulation modeling and genetic algorithm optimization to explore water management options in irrigated agriculture, Agric. Water Manage., 83, 221232.
  • Jackson, T. J., D. M. Le Vine, T. J. Schmugge, and F. R. Schiebe (1995), Large area mapping of soil moisture using ESTAR passive microwave radiometer in Washita '92, Remote Sens. Environ., 53, 2737.
  • Jackson, T. J., D. M. Le Vine, A. Y. Hsu, A. Oldak, P. J. Starks, C. T. Swift, J. D. Isham, and M. Haken (1999), Soil moisture mapping at regional scales using microwave radiometry: The Southern Great Plains hydrology experiment, IEEE Trans. Geosci. Remote Sens., 37, 21362151.
  • Jackson, T. J., R. Bindlish, M. Cosh, A. Gasiewski, B. Stankov, M. Klein, B. Weber, and V. Zavorotny (2005a), Soil moisture experiments 2004 (SMEX04) polarimetric scanning radiometer, AMSR-E and heterogeneous landscapes, Int. Geosci. Remote Sens. Symp., 2, 11141117, Art. 1525311.
  • Jackson, T. J., R. Bindlish, A. J. Gasiewski, B. Stankov, M. Klein, E. G. Njoku, D. Bosch, T. L. Coleman, C. Laymon, and P. J. Starks (2005b), Polarimetric scanning radiometer C and X band microwave observations during SMEX03, IEEE Trans. Geosci. Remote Sens., 43, 24182430.
  • Kerr, Y., P. Waldteufel, J.-P. Wigneron, J.-M. Martinuzzi, J. Font, and M. Berger (2001), Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission, IEEE Trans. Geosci. Remote Sens., 39, 17291735.
  • Krishnakumar, K. (1989), Micro-genetic algorithms for stationary and non-stationary function optimization, in SPIE: Intelligent Control and Adaptive Systems, vol. 1196, pp. 289296, Philadelphia, Pa.
  • Leij, F. J., W. J. Alves, M. Th. Van Genuchten J. R. Williams (1999), The UNSODA unsaturated soil hydraulic database, in Characterization and Measurement of the Hydraulic Properties of Unsaturated Porous Media, edited by M. Th. Van Genuchten, F. J. Leij, and L. Wu, pp. 12691281, Univ. of Calif., Riverside, Calif.
  • Merlin, O., J. P. Walker, A. Chehbouni, and Y. Kerr (2008), Towards deterministic downscaling of SMOS soil moisture using MODIS derived soil evaporative efficiency, Remote Sens. Environ., 112, 39353946.
  • Michalewicz, Z. (1996), Genetic Algorithms + Data Structures = Evolution Programs, 3rd ed. rev. and extended ed., Springer, London, U. K.
  • Mohanty, B. P., P. J. Shouse, D. A. Miller, and M. T. Van Genuchten (2002), Soil property database: Southern Great Plains 1997 hydrology experiment, Water Resour. Res., 38(5), 1047, doi:10.1029/2000WR000076.
  • Mualem, Y. (1976), A new model for predicting the hydraulic conductivity of unsaturated porous media, Water Resour. Res., 12, 513522.
  • Ni-Meister, W., Houser, P. R., and J. P. Walker (2006), Soil moisture initialization for climate prediction: Assimilation of scanning multifrequency microwave radiometer soil moisture data into a land surface model, J. Geophys. Res., 111, D20102, doi:10.1029/2006JD007190.
  • Njoku, E. G., T. L. Jackson, V. Lakshmi, T. Chan, and S. V. Nghiem (2003), Soil moisture retrieval from AMSR-E, IEEE Trans. Geosci. Remote Sens., 41, 215229.
  • Ritzel, B., J. W. Eheart, and S. Ranjithan (1994), Using genetic algorithms to solve multi-objective groundwater pollution containment problem, Water Resour. Res., 30, 15891603.
  • Robock, A., K. Y. Vinnikov, G. Srinivasan, J. K. Entin, S. E. Hollinger, N. A. Speranskaya, S. Liu, and A. Namkhai (2000), The global soil data bank, Bull. Am. Meteorol. Soc., 81, 12811299.
  • Sarwar, A., W. G. M. Bastiaanssen, M. Th. Boers, and J. C. Van Dam (2000), Evaluating drainage design parameters for the fourth drainage project, Pakistan by using SWAP model: Part I—Calibration, Irrig. Drain. Syst., 14, 257280.
  • Schaap, M. G., F. J. Leij, and M. Th. Van Genuchten (1999), A bootstrap-neural network approach to predict soil hydraulic parameters, in Proceedings of the International Workshop, Characterization and Measurements of the Hydraulic Properties of Unsaturated Porous Media, edited by M. Th. Van Genuchten, F. J. Leij, and L. Wu, pp. 12371250, Univ. of Calif., Riverside, Calif.
  • Scott, C. A., W. G. M. Bastiaanssen, and A. Mobin-ud-Din (2003), Mapping root zone soil moisture using remotely sensed optical imagery, J. Irrig. Drain. Eng., 129(5), 326335, doi:10.1061/(ASCE)0733-9437(2003)129:5(326).
  • Shimabukuro, Y. E., and J. A. Smith (1991), The least-squares mixing models to generate fraction images derived from remote sensing multispectral data, IEEE Trans. Geosci. Remote Sens., 29, 1620.
  • Singh, R., J. G. Kroes, J. C. Van Dam, and R. A. Feddes (2006a), Distributed ecohydrological modelling to evaluate the performance of irrigation system in Sirsa district, India: I. Current water management and its productivity, J. Hydrol., 329, 692713.
  • Singh, R., J. G. Kroes, J. C. Van Dam, and R. A. Feddes (2006b), Distributed ecohydrological modelling to evaluate irrigation system performance in Sirsa district, India: II. Impact of viable water management scenarios, J. Hydrol., 329, 714723.
  • Tateishi, R., Y. Shimazaki, and P. D. Gunin (2004), Spectral and temporal linear mixing model for vegetation classification, Int. J. Remote Sens., 25, 42034218.
  • Van Dam, J. C. (2000), Field-scale water flow and solute transport. SWAP model concepts, parameter estimation and case studies, Ph.D. dissertation, Wageningen Univ., Netherlands.
  • Van Dam J. C., J. Huygen, J. G. Wesseling, R. A. Feddes, P. Kabat, P. E. V. Van Waslum, P. Groenendijk, and C. A. Van Diepen (1997), Theory of SWAP version 2.0: Simulation of water flow and plant growth in the soil–water–atmosphere–plant environment, Tech. Doc. 45, Wageningen Agric. Univ. and DLO Winand Staring Cent., Netherlands.
  • Van Genuchten, M. Th. (1980), A closed-form equation foe predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44, 892898.
  • Wang, D., and X. Cai (2007), Optimal estimation of irrigation schedule—An example of quantifying human interferences to hydrologic processes, Adv. Water Resour., 30, 18441857.
  • Wesseling, J. G., and J. G. Kroes (1998), A global sensitivity analysis of the model SWAP, Rep. 160, DLO Winand Staring Cent., Wageningen, Netherlands.
  • Wösten, J. H. M., G. H. Veerman, and J. Stolte (1994), Water retention and hydraulic conductivity functions of top- and subsoils in the Netherlands: The Staring series, 66 pp., Tech. Doc. 18, Winand Staring Cent., Wageningen, Netherlands.
  • Wösten, J. H. M., A. Lilly, A. Nemes, and C. Le Bas (1999), Development and use of a database of hydraulic properties of European soils, Geoderma, 90, 169185.