SEARCH

SEARCH BY CITATION

References

  • Barenblatt, G. I., T. W.Patzek, and D. B.Silin (2003), The mathematical model of nonequilibrium effects in water-oil displacement, SPE J., 8(4), 409416.
  • Bear, J. (1972), Dynamics of Fluids in Porous Media, xvii, 764 pp., American Elsevier, New York.
  • Bottero, S., S. M.Hassanizadeh, P. J.Kleingeld, and T. J.Heimovaara (2011), Nonequilibrium capillarity effects in two-phase flow through porous media at different scales, Water Resour. Res., 47, W10505, doi:10.1029/2011WR010887.
  • Bourgeat, A., and M.Panfilov (1998), Effective two-phase flow through highly heterogeneous porous media: Capillary nonequilibrium effects, Comput. Geosci., 2(3), 191215.
  • Brooks, R. H., and A. T.Corey (1966), Properties of porous media affecting fluid flow, J. Irrig. Drain. Div., 92(2), 6190.
  • Camps-Roach, G., D. M.O'Carroll, T. A.Newson, T.Sakaki, and T. H.Illangasekare (2010), Experimental investigation of dynamic effects in capillary pressure: Grain size dependency and upscaling, Water Resour. Res., 46, W08544, doi:10.1029/2009WR008881.
  • Chen, L., and T. C. G.Kibbey (2006), Measurement of air-water interfacial area for multiple hysteretic drainage curves in an unsaturated fine sand, Langmuir, 22(16), 68746880, doi:10.1021/La053521e.
  • Chen, L., G. A.Miller, and T. C. G.Kibbey (2007), Rapid pseudo-static measurement of hysteretic capillary pressure-saturation relationships in unconsolidated porous media, Geotech. Test. J., 30(6), 474483.
  • Costanza-Robinson, M. S., B. D.Estabrook, and D. F.Fouhey (2011), Representative elementary volume estimation for porosity, moisture saturation, and air-water interfacial areas in unsaturated porous media: Data quality implications, Water Resour. Res., 47, W07513, doi:10.1029/2010WR009655.
  • Dahle, H. K., M. A.Celia, and S. M.Hassanizadeh (2005), Bundle-of-tubes model for calculating dynamic effects in the capillary-pressure-saturation relationship, Transp. Porous Med., 58(1–2), 522, doi:10.1007/s11242-004-5466-4.
  • Dane, J. H., and J. W.Hopmans (2002), Water retention and storage: Laboratory, in Methods of Soil Analysis, edited by J. H.Dane and G. C.Topp, pp. 675720, Soil Science Society of America, Madison, WI.
  • Das, D. B., and Mirzaei, M. (2012), Dynamic effects on capillary pressure relationships for two-phase flow in porous media: Experiments and numerical analyses, AIChE J., doi:10.1002/aic.13777, in press.
  • Fischer, U., O.Dury, H.Fluhler, and M. T.vanGenuchten (1997), Modeling nonwetting-phase relative permeability accounting for a discontinuous nonwetting phase, Soil Sci. Soc. Am. J., 61(5), 13481354.
  • Friedman, S. P. (1999), Dynamic contact angle explanation of flow rate-dependent saturation-pressure relationships during transient liquid flow in unsaturated porous media, J. Adhes. Sci. Technol., 13(12), 14951518.
  • Gielen, T. W. J., S. M.Hassanizadeh, A.Leijnse, and H. F.Nordhaug (2005), Dynamic effects in multiphase flow: a pore-scale network approach, in Upscaling Multiphase Flow in Porous Media, edited by D. B.Das and. S. M.Hassanizadeh, pp. 217236, Springer, Dordrecht.
  • Goel, G., and D. M.O'Carroll (2011), Experimental investigation of nonequilibrium capillarity effects: Fluid viscosity effects, Water Resour. Res., 47, W09507, doi:10.1029/2010WR009861.
  • Hassanizadeh, S. M., and W. G.Gray (1990), Mechanics and thermodynamics of multiphase flow in porous-media including interphase boundaries, Adv. Water Resour., 13(4), 169186.
  • Hassanizadeh, S. M., and W. G.Gray (1993a), Toward an improved description of the physics of 2-phase flow, Adv. Water Resour., 16(1), 5367.
  • Hassanizadeh, S. M., and W. G.Gray (1993b), Thermodynamic basis of capillary-pressure in porous-media, Water Resour. Res., 29(10), 33893405.
  • Hassanizadeh, S. M., M. A.Celia, and H. K.Dahle (2002), Dynamic effect in the capillary pressure-saturation relationship and its impacts on unsaturated flow, Vadose Zone J., 1(1), 3857.
  • Huyakorn, P. S., and G. F.Pinder (1986), Computational Methods in Subsurface Flow, Academic, New York.
  • Kalaydjian, F. (1992), Dynamic capillary pressure curve for water/oil displacement in porous media: Theory vs. experiment, Rep. 24813-MS, 16 pp, Society of Petroleum Engineers, Richardson, TX.
  • Klute, A., and W. R.Gardner (1962), Tensiometer response time, Soil Sci., 93, 204207.
  • Manthey, S., S. M.Hassanizadeh, and R.Helmig (2005), Macro-scale dynamic effects in homogeneous and heterogeneous porous media, Transport Porous Med., 58(1–2), 121145, doi:10.1007/s11242-004-5472-6.
  • Muraleetharan, K. K., and C. F.Wei (1999), Dynamic behaviour of unsaturated porous media: Governing equations using the theory of mixtures with interfaces (TMI), Int. J. Numer. Anal. Met., 23(13), 15791608.
  • O'Carroll, D. M., T. J.Phelan, and L. M.Abriola (2005), Exploring dynamic effects in capillary pressure in multistep outflow experiments, Water Resour. Res., 41(11), W11419, doi:10.1029/2005WR004010.
  • Oliviera, I. B., A. H.Demond, and A.Salehzadeh (1996), Packing of sands for the production of homogeneous porous media, Soil Sci. Soc. Am. J., 60(1), 4953, doi:10.2136/sssaj1996.03615995006000010010x.
  • Oung, O., S. M.Hassanizadeh, and A.Bezuijen (2005), Two-phase flow experiments in a geocentrifuge and the significance of dynamic capillary pressure effect, J. Porous Med., 8(3), 247257.
  • Richards, L. A. (1949), Methods of measuring soil moisture tension, Soil Sci., 68(1), 95112.
  • Sakaki, T., D. M.O'Carroll, and T. H.Illangasekare (2010), Direct quantification of dynamic effects in capillary pressure for drainage-wetting cycles, Vadose Zone J., 9(2), 424437, doi:10.2136/Vzj2009.0105.
  • Selker, J., P.Leclerq, J. Y.Parlange, and T.Steenhuis (1992), Fingered flow in 2 dimensions. 1. Measurement of matric potential, Water Resour. Res., 28(9), 25132521.
  • Smiles, D. E., G.Vachaud, and M.Vauclin (1971), A test of uniqueness of soil moisture characteristic during transient nonhysteretic flow of water in a rigid soil, Soil Sci. Soc. Am. Pro., 35(4), 534539.
  • Stauffer, F. (1978), Time dependence of the relations between capillary pressure, water content and conductivity during drainage of porous media, International IAHR Symposium on Scale Effects in Porous Media, Thessaloniki, Greece.
  • Topp, G. C., A.Klute, and D. B.Peters (1967), Comparison of water content-pressure head data obtained by equilibrium steady-state and unsteady-state methods, Soil Sci. Soc. Am. Pro., 31(3), 312314.
  • Towner, G. D. (1980), Theory of time response of tensiometers, J. Soil Sci., 31(4), 607621.
  • Vachaud, G., M.Vauclin, and M.Wakil (1972), Study of uniqueness of soil-moisture characteristic during desorption by vertical drainage, Soil Sci. Soc. Am. Pro., 36(3), 531.
  • Weitz, D. A., J. P.Stokes, R. C.Ball, and A. P.Kushnick (1987), Dynamic capillary pressure in porous media: Origin of the viscous-fingering length scale, Phys. Rev. Lett., 59(26), 29672970.
  • Wildenschild, D., J. W.Hopmans, and J.Simunek (2001), Flow rate dependence of soil hydraulic characteristics, Soil Sci. Soc. Am. J., 65(1), 3548.
  • Wildenschild, D., J. W.Hopmans, M. L.Rivers, and A. J. R.Kent (2005), Quantitative analysis of flow processes in a sand using synchrotron-based x-ray microtomography, Vadose Zone J., 4(1), 112126.