SEARCH

SEARCH BY CITATION

References

  • Abbaszadeh, M. D., and H.Cinco-Ley (1995), Pressure transient behavior in a reservoir with a finite-conductivity fault, SPE Form. Eval., 10(1), 2632.
  • Ambastha, A. K., P. G.McLeroy, and A. S.Grader (1989), Effects of a partially communicating fault in a composite reservoir on transient pressure testing, SPE Form. Eval., 4(2), 210218.
  • Anderson, E. I. (2006), Analytical solutions for flow to a well through a fault, Adv. Water Resour., 29(12), 17901803.
  • Bense, V. F., R. T.Van Balen, and J. J.De Vries (2003), The impact of faults on the hydrogeological conditions in the Roer Valley Rift System: An overview, Neth. J. Geosci., 82, 4153.
  • Benson, S. M., and P.Cook (2005), Underground geological storage, in Intergovernmental Panel on Climate Change Special Report on Carbon Dioxide Capture and Storage, coordinating author P.Freund, pp. 195276, Cambridge Univ. Press, Cambridge, U. K.
  • Bixel, H. C., B. K.Larkin, and H. K.Van Poollen (1963), Effect of linear discontinuities on pressure build-up and drawdown behavior, J. Pet. Technol., 15(8), 885895.
  • Buscheck, T. A., Y.Sun, M.Chen, Y.Hao, T. J.Wolery, W. L.Bourcier, B.Court, M. A.Celia, S.Julio Friedmann, and R. D.Aines (2012), Active CO2 reservoir management for carbon storage: Analysis of operational strategies to relieve pressure buildup and improve injectivity, Int. J. Greenhouse Gas Control, 6(0), 230245.
  • Caine, J. S., J. P.Evans, and C. B.Forster (1996), Fault zone architecture and permeability structure, Geology, 24(11), 10251028.
  • Cihan, A., Q.Zhou, and J. T.Birkholzer (2011), Analytical solutions for pressure perturbation and fluid leakage through aquitards and wells in multilayered-aquifer systems, Water Resour. Res., 47(10), W10504, doi:10.1029/2011WR010721.
  • Faulkner, D. R., C. A. L.Jackson, R. J.Lunn, R. W.Schlische, Z. K.Shipton, C. A. J.Wibberley, and M. O.Withjack (2010), A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones, J. Struct. Geol., 32(11), 15571575.
  • Ferris, J. G. (1949), Ground water, in Hydrology, edited by C. O.Wisler and E. F.Brater, pp. 198272, John Wiley, New York.
  • Ghaderi, S. M., D. W.Keith, and Y.Leonenko (2009), Feasibility of injecting large volumes of CO2 into aquifers, Energy Procedia, 1(1), 31133120.
  • Hosseini, S. A., and J.-P.Nicot (2012), Scoping analysis of brine extraction/re-injection for enhanced CO2 storage, Greenhouse Gases: Sci. Technol., 2 (3), 172184.
  • Jacob, C. E. (1950), Flow of groundwater, in Engineering Hydraulics, edited by H.Rouse, pp. 321386, John Wiley, New York.
  • Jordan, P. D., C. M.Oldenburg, and J.-P.Nicot (2011), Estimating the probability of CO2 plumes encountering faults, Greenhouse Gases: Sci. Technol., 1(2), 160174.
  • Nicot, J.-P. (2008), Evaluation of large-scale CO2storage on fresh-water sections of aquifers: An example from the Texas Gulf Coast Basin, Int. J. Greenhouse Gas Control, 2(4), 582593.
  • Nordbotten, J. M., M. A.Celia, and S.Bachu (2004), Analytical solutions for leakage rates through abandoned wells, Water Resour. Res., 40, W04204, doi:10.1029/2003WR002997.
  • Raghavan, R. (2010), A composite system with a planar interface, J. Pet. Sci.Eng., 70(3–4), 229234.
  • Rahman, N. M. A., M. D.Miller, and L.Mattar (2003), Analytical solution to the transient-flow problems for a well located near a finite-conductivity fault in composite reservoirs, in SPE Annual Technical Meeting and Exhibition, paper 84295, Denver, Colo.
  • Réveillère, A., J.Rohmer, and J.-C.Manceau (2012), Hydraulic barrier design and applicability for managing the risk of CO2 leakage from deep saline aquifers, Int. J. Greenhouse Gas Control, 9(0), 6271.
  • Selvadurai, A. P. S. (2012), Fluid leakage through fractures in an impervious caprock embedded between two geologic aquifers, Adv. Water Resour., 41(0), 7683.
  • Shan, C., I.Javandel, and P. A.Witherspoon (1995), Characterization of leaky faults: Study of water flow in aquifer-fault-aquifer systems, Water Resour. Res., 31(12), 28972904.
  • Stauffer, P. H., R. J.Pawar, R. C.Surdam, Z.Jiao, H.Deng, B. C.Lettelier, H. S.Viswanathan, D. L.Sanzo, and G. N.Keating (2011), Application of the CO2-PENS risk analysis tool to the Rock Springs Uplift, Wyoming, Energy Procedia, 4(0), 40844091.
  • Stehfest, H. (1970), Algorithm 368 numerical inversion of Laplace transforms [D-5], Commun. ACM, 13(1), 4749.
  • Stewart, G., A.Gupta, and P.Westaway (1984), The interpretation of interference tests in a reservoir with sealing and partially communicating faults, in, SPE European Petroleum Conf., paper 12967, Society of Petroleum Engineers, London, U. K.
  • Sun, A. Y., and J.-P.Nicot (2012), Inversion of pressure anomaly data for detecting leakage at geologic carbon sequestration sites, Adv. Water Resour., 44(0), 2029.
  • Vardoulakis, I., and T.Harnpattanapanich (1986), Numerical Laplace-Fourier transform inversion technique for layered-soil consolidation problems: I. Fundamental solutions and validation, Int. J. Numer. Anal. Methods Geomech., 10, 347365.
  • Watson, F., S.Mathias, J.vanHunen, S.Daniels, and R.Jones (2012), Dissolution of CO2 from leaking fractures in saline formations, Transp. Porous Media, 94(3), 729745.
  • Wibberley, C. A. J., G.Yielding, and G.Di Toro (2008), Recent advances in the understanding of fault zone internal structure: A review, in Structure of Fault Zones: Implications for Mechanical and Fluid-flow Properties, edited by C. A. J.Wibberley et al., pp. 533, Geological Soc. of London Special Publication 299, London, U. K.
  • Yaxley, L. M. (1987), Effect of a partially communicating fault on transient pressure behavior, SPE Formation Eval., 2(4), 590598.