SEARCH

SEARCH BY CITATION

References

  • Baldocchi, D. D., and Y. Ryu (2011), A synthesis of forest evaporation fluxes—From days to years—As measured with eddy covariance, in Forest Hydrology and Biogeochemistry: Synthesis of Past Research and Future Directions, vol. 216, Ecological Studies, edited by D. F. Levia, D. E. Carlyle-Moses, and T. Tanaka), pp. 101116, Springer, Heidelberg, Germany.
  • Berthier, S., A. D. Kokutse, A. Stokes, and T. Fourcaud (2001), Irregular heartwood formation in maritime pine (Pinus pinaster Ait): Consequences for biomechanical and hydraulic tree functioning, Ann. Bot., 87, 1925.
  • Bouten, W., P. J. F. Swart, and E. de Water (1991), Microwave transmission, a new tool in forest hydrological research, J. Hydrol., 124, 199230.
  • Calder, I. R., and I. R. Wright (1986), Gamma ray attenuation studies of interception from Sitka spruce: Some evidence for an additional transport mechanism, Water Resour. Res., 22, 409417.
  • Carlyle-Moses, D. E. (2004), A reply to R. Keim's comment on “Measurement and modelling of growing-season canopy water fluxes in a mature mixed deciduous forest stand, southern Ontario, Canada”, Agric. For. Meteorol., 124, 281284.
  • Carlyle-Moses, D. E., and J. H. C. Gash (2011), Rainfall interception loss by forest canopies, in Forest Hydrology and Biogeochemistry: Synthesis of Past Research and Future Directions, vol. 216, Ecological Studies, edited by D. F. Levia, D. E. Carlyle-Moses, and T. Tanaka, pp. 407423, Springer, Heidelberg, Germany.
  • Crockford, R. H., and D. P. Richardson (2000), Partitioning of rainfall into throughfall, stemflow and interception: Effect of forest type, ground cover and climate, Hydrol. Process., 14, 29032920.
  • Daly, C., M. Halbleib, J. I. Smith, W. P. Gibson, M. K. Doggett, G. H. Taylor, J. Curtis, and P. A. Pasteris (2008), Physiographically-sensitive mapping of temperature and precipitation across the conterminous United States, Int. J. Climatol., 28, 20312064.
  • Forest Products Laboratory (FPL) (1999), Wood handbook: Wood as an engineering material, Gen. Tech. Rep. FPL-GTR-113, U.S. Dept. of Agric., For. Serv., Madison, Wis.
  • Franklin, J. F., and C. T. Dyrness (1988), Natural Vegetation of Oregon and Washington, 464 pp., Oreg. State Univ. Press, Corvallis, Oreg.
  • Friesen, J., C. van Beek, J. Selker, H. H. G. Savenije, and N. van de Giesen (2008), Tree rainfall interception measured by stem compression, Water Resour. Res., 44, W00D15, doi:10.1029/2008WR007074.
  • Gere, J. M., and S. P. Timoshenko (2004), Mechanics of materials (4th ed.). Nelson Engineering, p. 832.
  • Gillette, H. P. (1914), Engineering and Contracting, Myron Clark, Chicago, Ill.
  • Grabner, M., U. Müller, N. Gierlinger, and R. Wimmer (2005), Effects of heartwood extractives on mechanical properties of larch, IAWA J., 26, 211220.
  • Hancock, N. H., and J. M. Crowther (1979), A technique for the direct measurement of water storage on a forest canopy, J. Hydrol., 41, 105122.
  • Herwitz, S. R. (1985), Interception storage capacities of tropical rainforest canopy trees, J. Hydrol., 77, 237252.
  • Huang, Y. S., S. S. Chen, and T. P. Lin (2005), Continuous monitoring of water loading of trees and canopy rainfall interception using the strain gauge method, J. Hydrol., 311, 17.
  • Keim, R. F. (2004), Comment on “Measurement and modelling of growing-season canopy water fluxes in a mature mixed deciduous forest stand, southern Ontario, Canada”, Agric. For. Meteorol., 124, 277279.
  • Keim, R. F., and A. E. Skaugset (2004), A linear system model of dynamic throughfall rates beneath forest canopies, Water Resour. Res., 40, W05208, doi:10.1029/2003WR002875.
  • Keim, R. F., A. E. Skaugset, and M. Weiler (2006), Storage of water on vegetation under simulated rainfall of varying intensity, Adv. Water Resour., 29, 974986.
  • Klingaman, N. P., D. F. Levia, and E. E. Frost (2007), A comparison of three canopy interception models for a leafless mixed deciduous forest stand in the eastern United States, J. Hydrometeorol., 8, 825836.
  • Koponen, T., T. Karppinen, E. Hægström, P. Saranpää, and R. Serimaa (2005), The stiffness modulus of Norway spruce as a function of year ring, Holzforschung, 59, 451455.
  • Launay, J., M. Ivkovich, L. Pâques, C. Bastien, P. Higelin, and P. Rozenberg (2005), Rapid measurement of trunk MOE on standing trees using RIGIDIMETER. Ann. For. Sci., 59, 465469.
  • Levia, D. F., and E. E. Frost (2006), Variability of throughfall volume and solute inputs in wooded ecosystems, Prog. Phys. Geogr., 30, 605632.
  • Levia, D. F., R. F. Keim, D. E. Carlyle-Moses, and E. E. Frost (2011), Throughfall and stemflow in wooded ecosystems, in Forest Hydrology and Biogeochemistry: Synthesis of Past Research and Future Directions, vol. 216, Ecological Studies, edited by D. F. Levia, D. E. Carlyle-Moses, and T. Tanaka, pp. 425443, Springer, Heidelberg, Germany.
  • Lutz, J. A., K. A. Martin, and J. D. Lundquist (2012), Using fiber optic cable to measure surface temperature in heterogeneous forests, Northwest Sci., 86(2), 108121.
  • Lyons, C. K., R. B. Guenther, and M. R. Pyles (2002), Considering heterogeneity in a cylindrical section of a tree, International Journal of Solids and Structures, 39, 46654675.
  • Maryland (MD) State Climatologist Office (2012), www.atmos.umd.edu/∼climate [Accessed June 2012].
  • Muzylo, A., P. Llorens, F. Valente, J. J. Keizer, F. Domingo, and J. H. C. Gash (2009), A review of rainfall interception modelling, J. Hydrol., 370, 191206.
  • Nanko, K., N. Hotta, and M. Suzuki (2006), Evaluating the influence of canopy species and meteorological factors on throughfall drop size distribution, J. Hydrol., 329, 422431.
  • Passialis, C., and S. Adamopoulus (2002), A comparison of the NDT methods for determining the modulus of elasticity in flexure of fir and black locust small clear wood specimens, Holz als Roh-und Werkstoff, 60, 323324.
  • Pereira, F. L., J. H. C. Gash, J. S. David, T. S. David, P. R. Monteiro, and F. Valente (2009), Modelling interception loss from evergreen oak Mediterranean savannas: Application of a tree-based modelling approach, Agric. For. Meteorol., 149, 680688.
  • Price, A. G., and D. E. Carlyle-Moses (2003), Measurement and modelling of growing-season canopy water fluxes in a mature mixed deciduous forest stand, southern Ontario, Canada, Agric. For. Meteorol., 119, 6985.
  • Pypker, T. G., B. J. Bond, T. E. Link, D. Marks, and M. H. Unsworth (2005), The importance of canopy structure in controlling the interception loss of rainfall: Examples from a young and old-growth Douglas-fir forest, Agric. For. Meteorol., 130, 113129.
  • Rutter, A. J., K. A. Kershaw, P. C. Robins, and A. J. Morton (1971), A predictive model of rainfall interception in forests, 1. Derivation of the model from observations in a plantation of Corsican pine. Agric. Meteorol., 9, 367384.
  • Schmidt, R. A. (1991). Sublimation of snow intercepted by an artificial conifer, Agric. For. Meteorol., 54, 127.
  • Teklahaimanot, Z., and P. G. Jarvis (1991), Direct measurement of evaporation of intercepted water from forest canopies, J. Appl. Ecol., 28, 603618.
  • Van Stan, J. T., M. T. Jarvis, and D. F. Levia (2010), An automated instrument for the measurement of bark microrelief, IEEE Trans. Instrum. Meas., 59, 491493.
  • Van Stan, J. T., M. T. Jarvis, D. F. Levia, and J. Friesen (2011a), Instrumental method for reducing error in compression-derived measurements of rainfall interception for individual trees, Hydrol. Sci. J., 56, 10611066.
  • Van Stan, J. T., C. M. Siegert, D. F. Levia, and C. E. Scheick (2011b), Effects of wind-driven rainfall on stemflow generation between codominant tree species with differing crown characteristics, Agric. For. Meteorol., 151, 12771286.
  • Whitehead, D. (1998), Regulation of stomatal conductance and transpiration in forest canopies, Tree Physiol., 18, 633644.