Origins of Igneous Layering



Anyone who has ever seen a photo of a layered intrusion, let alone visited one first hand, or even seen a thin section from one, cannot help but be impressed by the stunning record of crystal growth and deposition. Such bodies stand as majestic monuments of undeniable evidence that intricate magmatic processes exist, processes that couple crystallization, convection, and crystal sorting to form rocks so highly ordered and beautiful that they are a wonder to behold. These are the altars to which petrologists must carry their conceived petrologic processes for approval.

Although significant in number, the best layered intrusions seem to be found almost always in remote places. Their names, Bushveld, Muskox, Kiglapait, Stillwater, Duke Island, Skaergaard, Rhum, ring through igneous petrology almost as historic military battles (Saratoga, Antietam, Bull Run, Manassas, Gettysburg) do through American history. People who have worked on such bodies are almost folk heros: Wager, Deer, Brown, Jackson, Hess, Irvine, McBirney, Morse; these names are petrologic household words. Yet with all this fanfare and reverence, layered instrusions are nearly thought of as period pieces, extreme examples of what can happen, but not generally what does. This is now all changing with the increasing realization that these bodies are perhaps highly representative of all magmatic bodies. They are simply more dynamically complete, containing more of the full range of interactions, and of course, exposing a more complete record. They are one end of a spectrum containing lava flows, lava lakes, large sills, plutons, and layered intrusions. This book uniquely covers this range with an abundance of first-hand field observations and a good dose of process conceptualization, magma physics, and crystal growth kinetics.