NOx And N2O Emissions From Soil


  • E. J. Williams,

  • G. L. Hutchinson,

  • F. C. Fehsenfeld


Emission Of NOx (principally NO) and N2O from soils is reviewed with particular emphasis placed on the atmospheric and ecological implications of this source. The photochemistry of these species in the atmosphere is summarized as well as the methods available for the determination of fluxes. Processes which produce and consume both NO and N2O in soils are principally microbiological in nature and are linked directly and indirectly with the chemical and physical factors that control gaseous transport through the soil medium. Linkages among these processes occur over many different temporal and spatial scales which makes interpretation of the available data difficult. A summary of results from laboratory and field studies shows that considerable spatial and temporal variability exists in the emissions. This variability can be related to factors such as temperature, water content, soil composition, nutrient availability, vegetation, disturbances (e.g., burning, agricultural practices), and others. Because NOx and N2O play central roles in many important environmental problems, there is a need for accurate estimates of the magnitude of the soil source, but the large degree of variability in the existing data makes extrapolation highly uncertain. To overcome this uncertainty, models are required which can simulate the processes responsible for production, consumption, and transport of these species at all relevant temporal and spatial scales. Integrated field studies will also be required to validate the model results.