In this work, the problem of transient scattering by arbitrarily shaped two-dimensional dielectric cylinders is solved using the marching-on-in-time technique. The dielectric problem is approached via the equivalence principle. Three different formulations, namely, the electric field integral equation formulation, the magnetic field integral equation formulation, and the combined field integral equation formulation are considered. Numerical results are presented for two cross sections, namely, a circle and a square, and compared with inverse discrete Fourier transform (IDFT) techniques. In each case, good agreement is obtained with the IDFT solution.