We measured dimethylsulfide in air (DMSa) and the number concentration, size distribution, and chemical composition of atmospheric aerosols, including the concentration of cloud condensation nuclei (CCN), during February-March 1991 over the tropical South Atlantic along 19°S (F/S Meteor, cruise 15/3). Aerosol number/size distributions were determined with a laser-optical particle counter, condensation nuclei (CN) concentrations with a TSI 3020, and cloud condensation nuclei (CCN) with a Hudson-type supersaturation chamber. Aerosol samples were collected on two-stage stacked filters and analyzed by ion chromatography for soluble ion concentrations. Black carbon in aerosols was measured by visible light absorption and used to identify and eliminate periods with anthropogenic pollution from the data set. Meteorological analysis shows that most of the air masses sampled had spent extended periods over remote marine areas in the tropical and subtropical region. DMSa was closely correlated with the sea-to- air DMS flux calculated from DMS concentrations in seawater and meteorological data. Sea salt made the largest contribution to aerosol mass and volume but provided only a small fraction of the aerosol number concentration. The submicron aerosol had a mean composition close to ammonium bisulfate, with the addition of some methanesulfonate. Aerosol (CN and CCN) number and non-sea-salt sulfate concentrations were significantly correlated with DMS concentration and flux. This suggests that DMS oxidation followed by aerosol nucleation and growth in the marine boundary layer is an important, if not dominating, source of CN and possibly CCN. The degree of correlation between DMS and particle concentrations in the marine boundary layer may be strongly influenced by the different time scales of the processes regulating these concentrations. Our results provide strong support for several aspects of the CLAW hypothesis, which proposes the existence of a feedback loop linking DMS emission from marine plankton to sulfate aerosol and global climate.