SEARCH

SEARCH BY CITATION

The scattering of an electromagnetic plane wave from an arbitrary configuration of parallel circular cylinders is investigated using four different techniques. The cylinders are made of perfectly conducting or homogeneous dielectric material. These techniques are a boundary value type of solution, an iterative scattering procedure, a hybrid approach based on a combination of exact and method of moments solution, and a high-frequency asymptotic approximation. The analysis is given in detail for the transverse magnetic (TM) polarization, and that for the transverse electric (TE) polarization is outlined. Numerical results are provided to show the major differences between these techniques and the validity of using circular cylinders in modeling composite two-dimensional scatterers.