SEARCH

SEARCH BY CITATION

The relationship between the fractal dimension of a perfectly conducting bidimensionnal profile and the fractal dimension of the time domain scattered field is investigated. The first part of the paper is dedicated to the profile itself; implementation of the counting box method for fractal dimension estimation is described and improved by the adjunction of an iterative process involving a correlation criterion. The second part is about the field scattered by a fractal profile which is calculated by the method of moments; polarizations, directions of incidence and observation effects are studied. Influence of spectral window and of noise is also investigated. Results show that fractal dimensions of the field and of the profile are linked by a monotonous increasing function which weakly depends on the polarizations and on the directions of incidence and observation. Moreover, the fractal dimension shows robustness to noise.