SEARCH

SEARCH BY CITATION

References

  • Adams, J., P. Swarztrauber, R. Sweet, FISHPAK: A package of Fortran subprograms for the solution of separable elliptic partial differential equations, NCAR applications softwareNatl. Cent. for Atmos. Res., Boulder, Colo.May, 1988.
  • Allison, G. B., C. J. Barnes, Estimation of evaporation from the normally “dry” Lake Frome in South Australia, J. Hydrol., 78, 229242, 1985.
  • Arakawa, A., Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow, I, J. Comput. Phys., 1, 119143, 1966.
  • Bowler, J. M., Spatial variability and hydrologic evolution of Australian lake basins: Analogue for Pleistocene hydrologic change and evaporite formation, Palaeogeogr. Palaeoclimatol. Palaeoecol., 54, 2141, 1986.
  • Braester, C., Moisture variation at the soil surface and the advance of the wetting front during infiltration at constant flux, Water Resour. Res., 9, 687694, 1973.
  • Duffy, C. J., S. Al-Hassan, Groundwater circulation in a closed desert basin: Topographic scaling and climatic forcing, Water Resour. Res., 24, 16751688, 1988.
  • Foster, T. D., Stability of a homogeneous fluid cooled uniformly from above, Phys. Fluids, 8, 12491257, 1965a.
  • Foster, T. D., Onset of convection in a layer of fluid cooled uniformly from above, Phys. Fluids, 8, 17701774, 1965b.
  • Foster, T. D., The effect of initial conditions and lateral boundaries on convection, J. Fluid Mech., 37, 8194, 1969.
  • Friedman, I., J. L. Bischoff, C. A. Johnson, S. W. Tyler, andJ. P. Fitts, Movement and diffusion of pore fluids in Owens Lake sediments from core OL-92 as shown by salinity and deuterium-hydrogen ratios, inAn 800,000-Year Paleoclimatic Record From Core OL-92, Owens Lake, Southeast California, edited byG. I. Smith, andJ. L. Bischoff, Geol. Soc. Am. Spec. Pap., 317, in press,1997.
  • Green, L. L., T. D. Foster, Secondary convection in a Hele Shaw cell, J. Fluid Mech., 71, 675687, 1975.
  • Herbert, A. W., C. P. Jackson, D. A. Lever, Coupled groundwater flow and solute transport with fluid density strongly dependent upon concentration, Water Resour. Res., 24, 17811795, 1988.
  • Holst, P. H., K. Aziz, Transient three-dimensional natural convection in confined porous media, Int. J. Heat Mass Transfer, 15, 7390, 1972.
  • Homsy, G. M., A. E. Sherwood, Convective instabilities in porous media with through flow, Am. Inst. Chem. Eng., 22, 168174, 1976.
  • Horne, R. N., Three-dimensional natural convection in a confined porous medium heated from below, J. Fluid Mech., 92, 751766, 1979.
  • Horne, R. N., F. Rodriguez, Dispersion in tracer flow in geothermal systems, Geophys. Res. Lett., 10, 289292, 1983.
  • Horne, R. N., M. J. O'Sullivan, Oscillatory convection in a porous medium heated from below, J. Fluid Mech., 66, 339352, 1974.
  • Horne, R. N., M. J. O'Sullivan, Origin of oscillatory convection in a porous medium heated from below, Phys. Fluids, 21, 12601264, 1978.
  • Jacobson, G., J. Ferguson, W. R. Evans, Nested groundwater discharge complexes in the Mallee region, Murray Basin, southeast Australia, The Basin Evolution and Paleoclimate Significance of PlayasM. Rosen, Geol. Soc. of Am., Boulder, Colo., 1993.
  • Jesperson, D. C., Arakawa's method is a finite-element method, J. Comput. Phys., 16, 383390, 1974.
  • Lesieur, M., C. Staquet, P. Le Roy, P. Comte, The mixing layer and its coherence examined from the point of view of two- dimensional turbulence, J. Fluid Mech., 192, 511534, 1988.
  • Macumber, P. G., Interactions between groundwater and surface water systems in northern Victoria, Ph.D. thesis,, 506 pp.,Univ. of Melbourne,Parkville, Australia,1983.
  • Macumber, P. G., Interaction Between Ground Water and Surface Systems in Northern Victoria, 345, Dep. of Conserv. and Environ., East Melbourne, Australia, 1991.
  • Mason, M., W. Weaver, The settling of small particles in a fluid, Phys. Rev., 23, 412426, 1924.
  • Ogata, A., Dispersion in porous media, Ph.D. thesis,Northwest. Univ.,Evanston, Ill.,1958.
  • Rees, D. A., A. P. Bassom, The nonlinear non-parallel wave instability of boundary-layer flow induced by a horizontal heated surface in porous media, J. Fluid Mech., 253, 267295, 1993.
  • Roache, P. J., Computational Fluid Dynamics, 446, Hermosa, Albuquerque, N. M., 1982.
  • Salmon, R., L. D. Talley, Generalizations of Arakawa's algorithm, J. Comput. Phys., 83, 247259, 1989.
  • Smith, G. I., I. Friedman, R. J. McLaughlin, Studies of Quaternary saline lakes, III, Mineral, chemical, and isotopic evidence of salt solution and crystallization processes in Owens Lake, California, 1969–1971, Geochim. Cosmochim. Acta, 51, 811827, 1987.
  • Sneddon, I., Fourier Transforms, 542, McGraw-Hill, New York, 1951.
  • Storm, M. L., Heat conduction in simple metals, J. Appl. Phys., 22, 940951, 1951.
  • Swarztrauber, P. N., R. A. Sweet, Efficient Fortran subprograms for the solution of separable elliptic partial differential equations, ACM Trans. Math. Software, 5, 352364, 1979.
  • Teller, J. T., J. M. Bowler, P. G. Macumber, Modern sedimentation and hydrology in Lake Tyrrell, Victoria, J. Geol. Soc. Aust., 29, 159175, 1982.
  • vanDuijn, C. J., L. A. Peletier, R. J. Schotting, On the analysis of brine transport in porous media, Eur. J. Appl. Math., 4, 271302, 1993.
  • Wood, W. W., W. E. Sanford, Groundwater control of evaporite deposition, Econ. Geol. Bull. Soc. Econ. Geol., 856, 12261235, 1990.
  • Wooding, R. A., Instability of a viscous liquid of variable density in a vertical Hele-Shaw cell, J. Fluid Mech., 7, 501515, 1960a.
  • Wooding, R. A., Rayleigh instability of a thermal boundary layer in flow through a porous medium, J. Fluid Mech., 9, 183192, 1960b.
  • Wooding, R. A., Growth of fingers at an unstable diffusing interface in a porous medium or Hele-Shaw cell, J. Fluid Mech., 39, 477495, 1969.
  • Wooding, R. A., S. W. Tyler, I. White, andP. A. Anderson, Convection in groundwater below an evaporating salt lake, 2, Evolution of fingers or plumes,Water Resour. Res., 6.
  • Zimmerman, W. B., G. M. Homsy, Nonlinear viscous fingering in miscible displacement with anisotropic dispersion, Phys. Fluids A, 3, 18591872, 1991.
  • Zimmerman, W. B., G. M. Homsy, viscous fingering in miscible displacements: Unification of effects of viscosity contrast, anisotropic dispersion, and velocity dependence of dispersion on nonlinear finger propagation, Phys. Fluids A, 4, 23482359, 1992.