Global Biogeochemical Cycles

A continental phenology model for monitoring vegetation responses to interannual climatic variability

Authors

  • Michael A. White,

  • Peter E. Thornton,

  • Steven W. Running


Abstract

Regional phenology is important in ecosystem simulation models and coupled biosphere/atmosphere models. In the continental United States, the timing of the onset of greenness in the spring (leaf expansion, grass green-up) and offset of greenness in the fall (leaf abscission, cessation of height growth, grass brown-off) are strongly influenced by meteorological and climatological conditions. We developed predictive phenology models based on traditional phenology research using commonly available meteorological and climatological data. Predictions were compared with satellite phenology observations at numerous 20 km × 20 km contiguous landcover sites. Onset mean absolute error was 7.2 days in the deciduous broadleaf forest (DBF) biome and 6.1 days in the grassland biome. Offset mean absolute error was 5.3 days in the DBF biome and 6.3 days in the grassland biome. Maximum expected errors at a 95% probability level ranged from 10 to 14 days. Onset was strongly associated with temperature summations in both grassland and DBF biomes; DBF offset was best predicted with a photoperiod function, while grassland offset required a combination of precipitation and temperature controls. A long-term regional test of the DBF onset model captured field-measured interannual variability trends in lilac phenology. Continental application of the phenology models for 1990–1992 revealed extensive interannual variability in onset and offset. Median continental growing season length ranged from a low of 129 days in 1991 to a high of 146 days in 1992. Potential uses of the models include regulation of the timing and length of the growing season in large-scale biogeochemical models and monitoring vegetation response to interannual climatic variability.

Ancillary