SEARCH

SEARCH BY CITATION

References

  • Campbell, G. S., An Introduction to Environmental Biophysics, Springer, New York, 1997.
  • Collatz, G. J., J. T. Ball, C. Grivet, J. A. Berry, Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer, Agric. For. Meteorol., 54, 107136, 1991.
  • Collatz, G. J., M. Ribas-Carbo, J. A. Berry, Coupled photosynthesis-stomatal conductance model for leaves of C4 plants, Aust. J. Plant Physiol., 79, 519538, 1992.
  • Conway, T. J., P. Tans, L. S. Waterman, K. W. Thoning, D. R. Buanerkitzis, K. A. Masarie, N. Zhang, Evidence for interannual variability of the carbon cycle from the NOAA/CMDL global air sampling network, J. Geophys. Res., 99, 2283122855, 1994a.
  • Conway, T. J., P. P. Tans, L. S. Waterman, Atmospheric CO2 from sites in the NOAA/CMDL air sampling network, Trends '93: A Compendium of Data on Global ChangeT. A. Boden, et al.Rep. ORNLI CDIAC-65, 41119Carbon Dioxide Inf. Anal. Cent., Oak Ridge Nat. Lab., Oak Ridge, Tenn., 1994b.
  • Esser, G., Sensitivity of global carbon pools and fluxes to human and potential climate impacts, Tellus, Ser. B., 39, 2460, 1987.
  • Esser, G., Osnabrück Biosphere Model: Structure, construction, results, Modern Ecology — Basic and Applied AspectsG. Esser, D. Overdieck, 679709, Elsevier, New York, 1991.
  • Esser, G., J. Hoffstadt, F. Mack, U. Wittenberg, High Resolution Biosphere Model — Documentation, Mitteil., 2, Inst, für Pflanzenökol. der Justus-Liebig-Univ. Giessen, Germany, 1994.
  • Farquhar, G. D., S. vonCaemmerer, J. A. Berry, A biochemical model of photosynthetic CO2 in leaves of C3 species, Planta, 149, 7890, 1980.
  • Federer, C. A., Transpiradonal supply and demand: Plant, soil and atmospheric effects evaluated by simulation, Water Resour. Res., 182, 355362, 1982.
  • Foley, J. A., Net primary productivity in the terrestrial biosphere: The application of a global model, J. Geophys. Res., 99, 2077320783, 1994.
  • , Food and Agriculture Organization,Soil Map of the World, vols.I–X, scale 1:5,000,000,Food and Agricultural Organization and U. N. Educ., Sci. and Cult. Organ.,Paris, France,19711979.
  • Friend, A. D., PGEN: An integrated model of leaf photosynthesis, transpiration, and conductance, Ecol. Model., 77, 233255, 1995.
  • Fung, I. Y., K. Prentice, E. Matthews, J. Lerner, G. Russell, Three-dimensional tracer model study of atmospheric CO2: Response to seasonal exchanges with the terrestrial biosphere, J. Geophys. Res., 88, 12811294, 1983.
  • Fung, I. Y., C. J. Tucker, K. C. Prentice, Application of advanced very high resolution radiometer vegetation index to study atmosphere-biosphere exchange of CO2, J. Geophys. Res., 92, 29993015, 1987.
  • Gallo, K. P., Experimental global vegetation index from AVHRR utilizing pre-launch calibration, cloud and Sun-angle screening, digital dataNat. Ocean, and Atmos. Admin., Nat. Geophys. Data Cent., Boulder, Co., 1992.
  • Haxeltine, A., I. C. Prentice, A general model for the light-use efficiency of primary production, Funct. Ecol., 10, 551561, 1996.
  • Haxeltine, A., I. C. Prentice, I. D. Cresswell, A coupled carbon and water flux model to predict vegetation structure, J. Veg. Sci., 1, 651666, 1996.
  • Heimann, M., The TM2 tracer model, model description and user manualDKRZRep. 10, 47Ger. Clim. Comput. Cent., Hamburg, 1995.
  • Heimann, M., C. D. Keeling, A three dimensional model of atmospheric CO2 transport based on observed winds, 2, Model description and simulated tracer experiments, Aspects of Climate Variability in the Pacific and the Western Americas, Geophys. Monogr. Ser., 55D. H. Peterson, 237275, AGU, Washington, D. C., 1989.
  • Heimann, M., P. Monfray, Spatial and temporal variation of the gas exchange coefficient for CO2, 1, Data analysis and global validationMax-Planck-Inst. for Meteorol. Rep. 31, 29Max-Planck-Inst. for Meteorol., Hamburg, 1989.
  • Heimann, M., C. D. Keeling, C. Tucker, A three dimensional model of atmospheric CO2 transport based on observed winds, 3, Seasonal cycle and synoptic time scale variations, Aspects of Climate Variability in the Pacific and the Western Americas, Geophys. Monogr. Ser., 55D. H. Peterson, 277303, AGU, Washington, D. C., 1989.
  • Howard, D. M., P. J. A. Howard, Relationships between CO2 evolution, moisture content, and temperature for a range of soil types, The Global Carbon Cycle and Its Pertubation by Man and ClimateRep. EPOC-CT90-0017 (MNLA)European Union, Brussels, Belgium, 1993.
  • Hunt, E. R., S. C. Piper, R. Nemani, C. D. Keeling, R. D. Otto, S. W. Running, Global net carbon exchange and intra-annual atmospheric CO2 concentrations predicted by an ecosystem process model and three-dimensional atmospheric transport model, Global Biogeochem. Cycles, 10, 431456, 1996.
  • Iacobellis, S. F., R. Frouin, H. Razafimpanilo, R. C. J. Somerville, S. C. Piper, North African savanna fires and atmospheric carbon dioxide, J. Geophys. Res., 99, 83218334, 1994.
  • Janecek, A., G. Benderoth, M. K. B. Lüdeke, J. Kindermann, G. H. Kohlmaier, Model of the seasonal and perennial carbon dynamics in deciduous-type forests controlled by climatic variables, Ecol. Modell., 49, 101124, 1989.
  • Jensen, M. E., H. R. Haise, Estimating evapotranspiration from solar radiation, J. Irrig. Drain. Div., Am. Soc. Civ. Eng., 89IR4, 1541, 1963.
  • Joyce, L. A., J. Mills, L. Heath, A. D. McGuire, R. W. Haynes, R. A. Birdsey, Forest sector impacts from changes in forest productivity under climate change, J. Biogeogr., 22, 703714, 1995.
  • Kaduk, J., Simulation der Kohlenstoffdynamik der globalen Landbiosphare mit SILVAN — Modellbeschreibung und Ergebnisse, Ph. D. thesis,, 157 pp.,Univ. of Hamburg,Hamburg, Germany,July,1996.
  • Kaduk, J., M. Heimann, A prognostic phenology scheme for global models of the terrestrial biosphere, Clim. Res., 6, 119, 1996.
  • Kaminski, T., R. Giering, M. Heimann, Sensitivity of the seasonal cycle of CO2 at remote monitoring stations with respect to seasonal surface exchange fluxes determined with the adjoint of an atmospheric transport model, Phys. Chem. Earth, 21, 457462, 1996.
  • Keeling, C. D., R. B. Bacastow, A. F. Carter, S. C. Piper, T. P. Whorf, M. Heimann, W. G. Mook, H. Roeloffzen, A three dimensional model of atmospheric CO2 transport based on observed winds, 1, Analysis of observational data, Aspects of Climate Variability in the Pacific and the Western Americas, Geophys. Monogr. Ser., 55D. H. Peterson, 165236, AGU, Washington, D. C., 1989.
  • Keeling, C. D., T. P. Whorf, M. Wahlen, J. van derPlicht, Interannual extremes in the growth of atmospheric CO2, Nature, 375, 666670, 1995.
  • Kindermann, J., et al., Structure of a global carbon exchange model for the terrestrial biosphere: The Frankfurt Biosphere Model (FBM), Water Air Soil Pollut., 70, 675684, 1993.
  • Knorr, W., M. Heimann, Impact of drought stress and other factors on seasonal land biosphere CO2 exchange studied through an atmospheric tracer transport model, Tellus Ser. B, 474, 471489, 1995.
  • Kohlmaier, G. H., et al., The Frankfurt Biosphere Model: A global process oriented model for the seasonal and longterm CO2 exchange between terrestrial ecosystems and the atmosphere, 2, Global results for potential vegetation in an assumed equilibrium state, Clim. Res., 8, 6187, 1997.
  • Kurz, K. D., Zur saisonalen Variabilität des ozeanischen Kohlendioxidpartialdrucks, Ph. D. thesis,, 107 pp.,Univ. of Hamburg,Hamburg, Germany,November1993.
  • Larcher, W., Physiological Plant Ecology, 303, Springer-Verlag, New York, 1980.
  • Law, R. M., et al., Variations in modeled atmospheric transport of carbon dioxide and the consequences for CO2 inversions, Global Biogeochem. Cycles, 70, 783796, 1996.
  • Leemans, R., W. P. Cramer, The IIASA database for mean monthly values of temperature, precipitation, and cloudiness on a global terrestrial gridRep. IIASA RR-91-18Laxenburg, Int. Inst. Appl. Syst. Anal., Austria, 1991.
  • Levin, I., J. Schuchard, B. Kromer, K. O. Münnich, The continental European Suess-effect, Radiocarbon, 321, 431440, 1989.
  • Levin, I., R. Graul, N. B. A. Trivett, Long-term observations of atmospheric CO2 and carbon isotopes at continental sites in Germany, Tellus, Ser. B, 47, 2324, 1995.
  • Lieth, H., Modeling the primary productivity of the world, Primary Productivity of the BiosphereH. Lieth, R. H. Whittaker, 237263, Springer-Verlag, New York, 1975.
  • Liss, P. S., L. Merlivat, Air-sea gas exchange rates: Introducton and synthesis, The Role of Air-Sea Exchange in Geochemical CyclingP. Buat-Menard, 113127, D. Reidel, Norwell, Mass., 1986.
  • Lloyd, J., J. A. Taylor, On the temperature dependence of soil respiration, Funct. Ecol., 8, 315323, 1994.
  • Lüdeke, M. K. B., et al., The Frankfurt Biosphere Model: A global process oriented model for the seasonal and longterm CO2 exchange between terrestrial ecosystems and the atmosphere, 1, Model description and illustrating results for the vegetation types cold deciduous and boreal forests, Clim. Res., 4, 143166, 1994.
  • Lüdeke, M. K. B., S. Dönges, R. D. Otto, J. Kindermann, F.-W. Badeck, P. Ramge, U. Jäkel, G. H. Kohlmaier, Responses in NPP and carbon stores of the northern biomes to a CO2-induced climatic change, as evaluated by the Frankfurt Biosphere Model (FBM), Tellus, Ser. B, 47, 191205, 1995.
  • Lüdeke, M. K. B., P. H. Ramge, G. H. Kohlmaier, The use of satellite-detected NDVI data for the validation of global vegetation phenology models and application to the Frankfurt Biosphere Model, Ecol. Modell., 97, 255270, 1996.
  • Lurin, B., W. Cramer, B. Moore III, S. I. Rasool, Global terrestrial net primary productivity, Global Change NewsLett. (IGBP), 19, 68, 1994.
  • Maier-Reimer, E., Geochemical cycles in an ocean general circulation model: Preindustrial tracer distributions, Global Biogeochem. Cycles, 7, 645677, 1993.
  • Maier-Reimer, E., U. Mikolajewicz, K. Hasselmann, Mean circulation of the Hamburg LSG OGCM and its sensitivity to the thermohaline surface forcing, J. Phys. Oceanogr., 23, 731757, 1993.
  • Marland, G., T. A. Boden, R. C. Griffin, S. F. Huang, P. Kanciruk, T. R. Nelson, Estimates of CO2 emissions from fossil fuel burning and cement manufacturing, based on the U. S. Bureau of Mines cement manufacturing dataRep. ORNL/CIAC-25, NDP-030Carbon Dioxide Inf. Anal. Cent., Oak Ridge Nat. Lab., Oak Ridge, Tenn., 1989.
  • McGuire, A. D., J. M. Melillo, L. A. Joyce, D. W. Kicklighter, A. L. Grace, B. Moore III, C. J. Vörösmarty, Interactions between carbon and nitrogen dynamics in estimating net primary productivity for potential vegetation in North America, Global Biogeochem. Cycles, 6, 101124, 1992.
  • McGuire, A. D., L. A. Joyce, D. W. Kicklighter, J. M. Melillo, G. Esser, C. J. Vörösmarty, Productivity response of climax temperate forests to elevated temperature and carbon dioxide: A North American comparison between two global models, Clim. Change, 24, 287310, 1993.
  • McGuire, A. D., J. M. Melillo, D. W. Kicklighter, L. A. Joyce, Equilibrium responses of soil carbon to climate change: Empirical and process-based estimates, J. Biogeogr., 22, 785796, 1995.
  • McGuire, A. D., D. W. Kicklighter, J. M. Melillo, Global climate change and carbon cycling in grasslands and conifer forests, Global Change: Effects on Coniferous Forests and Grasslands, SCOPE, 56A. I. Breymeyer, D. O. Hall, J. M. Melillo, G. I. Agren, 389411, John Wiley, New York, 1996.
  • McGuire, A. D., J. M. Melillo, D. W. Kicklighter, Y. Pan, X. Xiao, J. Helfrich, B. Moore III, C. J. Vorosmarty, A. L. Schloss, Equilibrium responses of global net primary production and carbon storage to doubled atmospheric carbon dioxide: Sensitivity to changes in vegetation nitrogen concentration, Global Biogeochem. Cycles, 11, 173189, 1997.
  • McNaughton, K. G., P. G. Jarvis, Predicting effects of vegetation changes on transpiration and evaporation, In Water Deficit and Plant GrowthT. T. Kozlowski, 147, Academic Press, New York, 1983.
  • Melillo, J. M., A. D. McGuire, D. W. Kicklighter, B. Moore III, C. J. Vorosmarty, A. L. Schloss, Global change and terrestrial net primary production, Nature, 363, 234240, 1993.
  • Melillo, J. M., D. W. Kicklighter, A. D. McGuire, W. T. Peterjohn, K. M. Newkirk, Global change and its effects on soil organic carbon stocks, Role of Nonliving Organic Matter in the Earth's Carbon CycleR. G. Zepp, C. Sontag, 175189, John Wiley, New York, 1995.
  • Monsi, M., T. Saeki, Über den Lichtfaktor und den Pflanzengesellschaften und seine Bedeutung für die Stoffproduktion, Jpn. J. of Bot., 14, 2252, 1953.
  • Murray, M. B., M. G. R. Cannell, R. I. Smith, Date of budburst of fifteen tree species in Britain following climate warming, J. Appl. Ecol., 26, 693700, 1989.
  • Nepstad, D. C., C. R. deCarvalho, E. A. Davidson, P. H. Jipp, P. A. Lefebvre, G. H. Negreiros, E. D. da Silva, T. A. Stone, S. E. Trumbore, S. Vieira, The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures, Nature, 372, 666669, 1994.
  • Nevison, C. D., G. Esser, E. A. Holland, A global model of changing N2O emissions from natural and perturbed soils, Clim. Change, 32, 327378, 1996.
  • Piper, S. C., E. F. Stewart, A gridded global data set of daily temperature and precipitation for terrestrial biospheric modeling, Global Biogeochem. Cycles, 10, 757782, 1996.
  • Potter, C. S., J. T. Randerson, C. B. Field, P. A. Matson, P. M. Vitousek, H. A. Mooney, S. A. Klooster, Terrestrial ecosystem production: A process model based on global satellite and surface data, Global Biogeochem. Cycles, 7, 811842, 1993.
  • Prentice, I. C., W. Cramer, S. P. Harrison, R. Leemans, R. A. Monserud, A. M. Solomon, A global biome model based on plant physiology and dominance, soil properties and climate, J. of Biogeogr., 19, 117134, 1992.
  • Raich, J. W., E. B. Rastetter, J. M. Melillo, D. W. Kicklighter, P. A. Steudler, B. J. Peterson, A. L. Grace, B. Moore III, C. J. Vörösmarty, Potential net primary productivity in South America: Application of a global model, Ecol. Appl., 1, 399429, 1991.
  • Ramonet, M., P. Monfray, Selection of baseline conditions in a 3D atmospheric transport model: application to the seasonal and synoptic variations of CO2, Tellus, Ser. B, 48, 502520, 1996.
  • Rastetter, E. B., A. W. King, B. J. Cosby, G. M. Hornberger, R. V. O'Neill, J. E. Hoppie, Aggregating fine-scale ecological knowledge to model coarser-scale attributes of ecosystems, Ecol. Appl., 2, 5570, 1992.
  • Rotty, R., Estimates of the seasonal variation in fossil fuel CO2 emissions, Tellus, Ser. B, 39, 203208, 1987.
  • Ruimy, A., B. Saugier, G. Dedieu, Methodology for the estimation of terrestrial net primary production from remotely sensed data, J. Geophys. Res., 99, 52635283, 1994.
  • Russell, G., J. Lerner, A new finite-differencing scheme for the tracer transport equation, J. Appl. Meteorol., 20, 14831498, 1981.
  • Schimel, D. S., Terrestrial ecosystems and the carbon cycle, Global Change Biol., 1, 7791, 1995.
  • Six, K. D., E. Maier-Reimer, Effects of plankton dynamics on seasonal carbon fluxes in an ocean general circulation model, Global Biogeochem. Cycles, 10, 559583, 1996.
  • Thomthwaite, C. W., J. R. Mather, Instructions and Tables for Computing Potential Evapotranspiration and the Water Balance, Publ. Climatol., 10, No. 3, Lab. of Climatol., Drexel Inst. of Technol., Centerton, New Jersey, 1957.
  • , VEMAP Members, Vegetation/ecosystem modeling and analysis project: Comparing biogeography and biogeochemistry models in a study of terrestrial ecosystem responses to climate change and CO2 doubling, Global Biogeochem. Cycles, 9, 407437, 1995.
  • Vorosmarty, C. J., B. Moore III, A. L. Grace, M. P. Gildea, J. M. Melillo, B. J. Peterson, E. B. Rastetter, P. A. Steudler, Continental scale models of water balance and fluvial transport: An application to South America, Global Biogeochem. Cycles, 3, 241265, 1989.
  • Warnant, P., L. Francois, D. Strivay, J. C. Gérard, CARAIB: A global model of terrestrial biological productivity, Global Biogeochem. Cycles, 8, 255270, 1994.
  • Woodward, F. I., T. M. Smith, W. R. Emanuel, A global primary productivity and phytogeography model, Global Biogeochem. Cycles, 9, 471490, 1995.