SEARCH

SEARCH BY CITATION

References

  • Ahrens, T. J., Constraints on core composition from shock-wave data, Philos Trans. R. Soc. London. Ser. A, 306, 3747, 1982.
  • Aukrust, E., A. Muan, Activities of components in oxide solid solutionsæthe systems CoO-MgO, CoO-MnO, and CoO-'FeO' at 1200°C., Trans. Metall. Soc. AIME, 227, 13781380, 1963.
  • Benz, W., A. G. W. Cameron, Terrestrial effects of the giant impact, Origin of the EarthH. E. Newsom, J. H. Jones, 6167, Oxford Univ. Press, New York, 1990.
  • Birch, F., Density and composition of mantle and core, J. Geophys. Res., 69, 43774388, 1964.
  • Boehler, R., Temperatures in the Earth's core from melting-point measurements of iron at high static pressures, Nature, 363, 534536, 1993.
  • Canil, D., Stability of clinopyroxene at pressure-temperature conditions of the transition region, Phys. Earth Planet. Inter., 86, 2534, 1994a.
  • Canil, D., An experimental calibration of the Ni in garnet geothermometer with applications, Contrib. Mineral. Petrol., 117, 410420, 1994b.
  • Chase Jr., M. W., C. A. Davies, J. R. Downey Jr., D. J. Frurip, R. A. McDonald, andA. N. Syverud, JANAF thermochemical tables,third ed.J. Phys. Chem. Ref. Data,14,suppl. 1,1985.
  • Chipman, J., J. C. Fulton, N. Gokcen, G. R. Caskey, Activity of silicon in liquid Fe-Si and Fe-C-Si alloys, Acta Metall., 2, 439450, 1954.
  • Darken, L. S., R. W. Gurry, Physical Chemistry of Metals, McGraw-Hill, New York, 1953.
  • Dreibus, G., H. Palme, Cosmochemical constraints on the sulfur content in the Earth's core, Geochim. Cosmochim. Acta, 60, 11251130, 1996.
  • Falloon, T. J., D. H. Green, Anhydrous partial melting of MORB pyrolite and other peridotite compositions at 10 kbar: Implications for the origin of primitive MORB glasses, Mineral. Petrol., 37, 181219, 1987.
  • Fei, Y., H.-K. Mao, B. O Mysen, Experimental determinatyion of element partitioning and calculation of phase relations in the MgO-FeO-SiO2 system at high pressure and high temperature, J. Geophys. Res., 96, 21572169, 1991.
  • Fernandez Guillermet, A., Assessing the thermodymamics of the Fe-Co-Ni system using a Calphad predictive technique, CALPHAD Publ., 13 (1), 122, 1989.
  • Freer, R., Bibliography self diffusion and impurity diffusion in oxides, J. Mater. Sci., 15, 803824, 1980.
  • Galer, S. J. G., S. L. Goldstein, Influence of accretion on lead in the Earth, Earth Processes Reading the Isotopic Code, Geophys. Monog. Ser., 95A. Basu, S. Hart, 7598, AGU, Washington, D. C., 1996.
  • Goarant, F., F. Guyot, J. Peyronneau, J.-P. Poirier, High-pressure and high-temperature reactions between silicates and liquid iron alloys, in the diamond anvil cell, studied by analytical electron microscopy, J. Geophys. Res., 97, 44774487, 1992.
  • Gokcen, N. A., J. Chipman, Silicon-oxygen equilibrium in liquid iron, Trans. Am. Inst. Min. Mettall. Pet., Eng., 194, 171181, 1952.
  • Green, D. H., Experimental melting studies on a model upper mantle composition at high pressure under water-saturated and water-undersaturated conditions, Earth Planet. Sci. Lett., 19, 3753, 1973.
  • Grossman, L., Condensation in the primitive solar nebula, Geochim. Cosmochim. Acta., 36, 597619, 1972.
  • Grossman, L., J. W., Larimer, Early chemical history of the solar system, Rev. Geophys., 12, 71101, 1974.
  • Hofmann, A. W., Diffusion in natural silicate melts: A critical review, Physics of Magmatic ProcessesR. B Hargraves, 385418, Princeton Univ. Press, Princeton, N. J., 1980.
  • Irifune, T., Absence of an aluminous phase in the upper part of the Earth's lower mantle, Nature, 370, 131133, 1994.
  • Ito, E., E. Takahashi, Y. Matsui, The mineralogy and chemistry of the lower mantle: An implication of the ultrahigh-pressure phase relations in the system MgO-FeO-SiO2, Earth Planet. Sci. Lett., 67, 238248, 1984.
  • Ito, E., K. Morooka, O. Ujike, T. Katsura, Reactions between molten iron and silicate melts at high pressure: Implications for the chemical evolution of Earth's core, J. Geophys. Res., 100, 59015910, 1995.
  • Johnson, K. T. M., I. Kushiro, Segregation of high pressure partial melts from peridotite using aggregates of diamond: A new experimental approach, Geophys. Res. Lett., 19, 17031706, 1992.
  • Kaiura, G. H., J. M. Toguri, Densities of the molten FeS, FeS-Cu2S and Fe-S-O systems — Utilizing a bottom-balance Archimedean technique, Can. Metall. Q., 18, 155164, 1979.
  • Kargel, J. S., J. S. Lewis, The composition and early evolution of the Earth, Icarus, 105, 125, 1993.
  • Kato, T., A. E. Ringwood, Melting relationships in the system Fe-FeO at high pressures: Implications for the composition and formation of the Earth's core, Phys. Chem. Miner., 16, 524538, 1989.
  • Kesson, S. E., J. D. Fitz Gerald, Partitioning of MgO, FeO, NiO, MnO and Cr2O3 between magnesian silicate perovskite and magnesiowüstite: Implications for the origin of inclusions in diamond and the composition of the lower mantle, Earth Planet. Sci. Lett., 111, 229240, 1991.
  • Knittle, A., R. Jeanloz, Simulating the core-mantle boundary: Results of experiments at high-pressure and temperatures, Science, 251, 14381443, 1991.
  • Lee, D.-C., A. N. Halliday, Hafnium-tungsten chronometry and the timing of terrestrial core formation, Nature, 378, 771774, 1995.
  • Li, J.-P., H. St. C. O'Neill, F. Seifert, Subsolidus phase relations in the system MgO-SiO2-Cr-O in equilibrium with metallic Cr, and their significance for the petrochemistry of chromium, J. Petrol., 36, 107132, 1995.
  • Malavergne, V., F. Guyot, Y. Wang, I. Martine, Partitioning of nickel, cobalt and manganese between silicate perovskite and periclase: a test of cystal field theory at high pressure, Earth Planet. Sci. Lett., 146, 499509, 1997.
  • MacDonald, G. J., L. Knopoff, On the chemical composition of the outer core, Geophys. J. Royal Astron. Soc., 1, 284297, 1958.
  • McCammon, C., Perovskite as a possible sink for ferric iron in the lower mantle, Nature, 387, 694696, 1997.
  • McDonough, W. F., S.-S. Sun, The composition of the Earth, Chem. Geol., 120, 223253, 1995.
  • McFarlane, E. A., M. J. Drake, D. C. Rubie, Element partitioning between Mg-perovskite, magnesiowüstite, and silicate melt at conditions of the Earth's mantle, Geochem. Cosmochim. Acta, 58, 51615172, 1994.
  • Murthy, V. R., H. T. Hall, The chemical composition of the Earth core: Possibility of sulfur in the core, Phys. Earth Planet. Inter., 2, 276282, 1970.
  • Ohtani, E., A. E. Ringwood, Composition of the core, I, Solubility of oxygen in molten iron at high temperatures, Earth Planet. Sci. Lett., 71, 8593, 1984.
  • Ohtani, E., A. E. Ringwood, W. Hibberson, Composition of the core, II, Effect of high pressure on solubility of FeO in molten iron, Earth Planet. Sci. Lett., 71, 94103, 1984.
  • Ohtani, E., T. Kato, E. Ito, Transition metal partitioning between lower mantle and core materials at 27 GPa, Geophys. Res. Lett., 18, 8588, 1991.
  • O'Neill, H. St. C., The origin of the Moon and the early history of the Earth: A chemical model, 1, The Moon, Geochim. Cosmochim. Acta., 55, 11351157, 1991a.
  • O'Neill, H. St. C., The origin of the Moon and the early history of the Earth: A chemical model, 2, The Earth, Geochim. Cosmochim. Acta, 55, 11591172, 1991b.
  • O'Neill, H. St. C., Siderophile elements and the Earth's formation, Science, 257, 12821285, 1992.
  • O'Neill, H. St. C., H. Palme, Composition of the silicate Earth: Implications for Accretion and core formation, The Earth's Mantle: Structure, Composition and Evolution — the Ringwood Volume, 3126, Cambridge Univ. Press, New York, 1997.
  • O'Neill, H. St. C., M. I. Pownceby, Thermodynamic data from redox reactions at high temperatures, I, An experimental and theoretical assessment of the electrochemical method using stabilized zirconia electrolytes, with revised values for the Fe — “FeO”, Co-CoO, Ni-NiO and Cu-Cu2O oxygen buffers, and new data for the W-WO2 buffer, Contrib. Mineral. Petrol., 114, 296314, 1993.
  • Palme, H., H. St. C. O'Neill, Formation of the Earth's core, Geochim. Cosmochim. Acta., 60, 11061108, 1996.
  • Poirier, J.-P., Light elements in the Earth's outer core: A critical review, Phys. Earth Planet. Inter., 85, 319337, 1994.
  • Richardson, F. D., Physical Chemistry of Melts in Metallurgy, Academic Press, San Diego, Calif., 1974.
  • Ringwood, A. E., The chemical evolution of terrestrial planets, Geochim. Cosmochim. Acta, 30, 41104, 1966.
  • Ringwood, A. E., Composition of the core and implications for origin of the earth, Geochem. J., 11, 111135, 1977.
  • Ringwood, A. E., The Earth's core: Its composition, formation and bearing upon the origin of the Earth, Proc. R. Soc. London, A, 395, 146, 1984.
  • Ringwood, A. E., W. Hibberson, The system Fe-FeO revisited, Phys. Chem. Miner., 17, 313319, 1990.
  • Ringwood, A. E., W. Hibberson, Solubilities of mantle oxides in molten iron at high pressures and temperatures: Implications for the composition and formation of Earth's core, Earth Planet. Sci. Lett., 102, 235251, 1991.
  • Rubie, D. C., S. Karato, H. Yan, H. St. C. O'Neill, Low differential stress and controlled chemical environment in multi-anvil high pressure experiments, Phys. Chem. Miner., 20, 315322, 1993a.
  • Rubie, D. C., C. R. Ross II, M. R. Carroll, S. C. Elphick, Oxygen self-diffusion in Na2Si4O9 liquid up to 10 GPa and estimation of high pressure viscosities, Am. Mineral., 78, 574582, 1993b.
  • Saxena, S. K., andG. Eriksson, Chemistry and formation of the terrestrial planets, inChemistry and Physics of the Terrestrial Planets, Adv. in Phys. Geochem., 6,30105, edited byS. K. Saxena, pp.30–105Springer Verlag,Berlin,1986.
  • Saxena, S. K., N. Chatterjee, Y. Fei, G. Shen, Thermodynamic Data on Oxides and Silicates, Springer-Verlag, New York, 1993.
  • Seifert, S., H. St. C. O'Neill, Experimental determination of activity-composition relations in Ni2SiO4-Mg2SiO4 and Co2SiO4-Mg2SiO4 olivine solid solutions at 1200 K and 0.1 MPa and 1573 K and 0.5 GPa, Geochim. Cosmochim. Acta., 51, 97104, 1987.
  • , Metals Reference Book5th ed.C. J. Smithells, Butterworths, London, 1976.
  • Stevenson, D. J., Models of the Earth's core, Science, 214, 611619, 1981.
  • Stevenson, D. J., Fluid dynamics of core formation, Origins of the EarthH. E. Newsom, J. H. Jones, 231249, Oxford Univ. Press, New York, 1990.
  • Taylor, S. R., M. D. Norman, Accretion of differentiated Planetesimals to the Earth, Origins of the EarthH. E. Newsom, J. H. Jones, 2943, Oxford Univ. Press, New York, 1990.
  • Touzelin, B., High temperature X-ray determination of iron monoxide lattice parameters under controlled atmosphere, Decomposition of iron monoxide between 25 and 570°C, Rev. Int. Hautes Temp. Réfract, 11, 219230, 1974.
  • Touzelin, B., Etude par diffraction des rayons x à haute température, en atmospere controlée, des oxydes de cobalt et de nickel, Rev. Int. Hautes Temp. Réfract, 15, 3341, 1978.
  • Ward, R. G., An Introduction to the Physical Chemistry of Iron and Steel Making, Edward Arnold, London, 1962.
  • Ware, N. G., Combined energy-dispersive-wavelength-dispersive quantitative electron microprobe analysis, X Ray Spectrom., 20, 7379, 1991.
  • Wood, B. J., J. Nicholls, The thermodynamic properties of reciprocal solid solutions, Contrib. Mineral. Petrol, 66, 389400, 1978.
  • Wood, B. J., D. C. Rubie, The effect of alumina on phase transformations at the 660-kilometer discontinuity from Fe-Mg partitioning experiments, Science, 273, 15221524, 1996.
  • Zanda, B., M. Bourot-Denise, C. Perron, R. H. Hewins, Origin and metamorphic redistribution of silicon, chromium and phosphorus in the metal of chondrites, Science, 265, 18461849, 1994.
  • Zhang, Y., P. H. Benoit, D. W. G. Sears, The classification and complex thermal history of the enstatite chondrites, J. Geophys. Res., 100, 94179438, 1995.