SEARCH

SEARCH BY CITATION

References

  • Alexander, R. C., R. L. Mobley, Monthly average sea-surface temperatures and ice-pack limits on a 1° global grid, Mon. Weath. Rev., 104, 143148, 1976.
  • Bourke, W. P., Spectral methods in global climate and weather prediction models, The Physical Basis of Climate Modeling, NATO ASI SeriesM. E. Schlesinger, 375431, D. Reidel, Norwell, Mass., 1988.
  • Bourke, W. P., B. J. McAvaney, K. Puri, R. Thurling, Global modeling of atmospheric flow by spectral methodsMethods in Computational Physics, 17, General Circulation Models of the AtmosphereJ. Chang, 267324, Academic, San Diego, Calif., 1977.
  • Cess, R. D., G. L. Potter, Exploratory studies of cloud radiative forcing with a general circulation model, Tellus, 39A, 460473, 1987.
  • Cess, R. D., G. L. Potter, A methodology for understanding and intercomparing atmospheric climate feedback processes in GCMs, J. Geophys. Res., 93, 83058314, 1988.
  • Cess, R. D., et al., Intercomparison and interpretation of cloud-climate feedback processes in nineteen atmospheric general circulation models, J. Geophys. Res., 95, 1660116615, 1990.
  • Cess, R. D., et al., Intercomparison and interpretation of snow-climate feedback processes in seventeen atmospheric general circulation models, Science, 253, 888892, 1991.
  • Cess, R. D., et al., Intercomparison of CO2 radiative forcing in general circulation models, Science, 262, 12521255, 1993.
  • Cess, R. D., et al., Cloud feedback in atmospheric general circulation models: An update, J. Geophys. Res., 101, 1279112794, 1996.
  • Colman, R. A., B. J. McAvaney, J. R. Fraser, L. J. Rikus, R. R. Dahni, Snow and Cloud Feedbacks Modeled by an Atmospheric General Circulation Model, Clim. Dyn., 9, 253265, 1994.
  • Colman, R. A., B. J. McAvaney, The sensitivity of the climate response of an atmospheric general circulation model to changes in convective parametrization and horizontal resolution, J. Geophys. Res., 100, 31553172, 1995.
  • Colman, R. A., B. J. McAvaney, Using ‘complex feedback’ analysis to investigate GCM climate sensitivity, Numerical Methods: the 7th BMRC modelling workshop, 4–6 Dec., 1995Rep. 53Bur. of Meteorol. Res. Cent., Melbourne, Australia, 1996.
  • Colman, R. A., S. B. Power, B. J. McAvaney, Non-linear climate feedback analysis in a GCM, Clim. Dyn., 1997.
  • Cunnington, W. M., J. F. B. Mitchell, On the dependence of climate sensitivity on convective parametrization, Clim. Dyn., 4, 8593, 1990.
  • Déqué, M., J. F. Royer, GCM response of the mean zonal surface heat and water budgets to a global sea surface temperature anomaly, Dyn. Atmos. Oceans, 16, 133146, 1991.
  • Gates, W. L., AMIP: The Atmospheric Model Intercomparison Project, Bull. Am. Meteorol. Soc., 73, 19621970, 1992.
  • Gong, W., X. Zhou, W-C. Wang, A diagnostic study of feedback mechanisms in greenhouse effects simulated by NCAR CCMl, Acta Meteorol. Sin., 8, 270282, 1994.
  • Hansen, J. D., A. Lacis, D. Rind, G. Russell, P. Stone, I. Fung, R. Ruedy, J. Lerner, Climate sensitivity: Analysis of feedback mechanisms, Climate Processes and Climate Sensitivity, Geophys. Monogr. Ser., 29J. E. Hansen, T. Takahashi, 130163, AGU, Washington D.C., 1984.
  • , Climate Change 1992: The Supplementary Report to the IPCC Scientific AssessmentJ. T. Houghton, B. Callander, S. K. Varney, 200Cambridge Univ. Press, New York, 1992.
  • , Climate Change: The IPCC Scientific AssessmentJ. T. Houghton, G. J. Jenkins, J. J. Ephraums, 365, Cambridge Univ. Press, New York, 1990.
  • , Climate Change 1995: The Science of Climate ChangeJ. T. Houghton, L. G. Meira Filho, B. A. Callander, N. Harris, A. Kattenberg, K. Maskell, 572, Cambridge Univ. Press, New York, 1996.
  • Kellogg, W. M., Z-C. Zhao, Sensitivity of soil moisture to doubling of CO2 in climate model experiments, Part I: North America, J. Clim., 1, 348366, 1988.
  • Kuo, H. L., Further studies of the parametrization of the influence of cumulus convection on large scale flow, J. Atmos. Sci., 31, 12321240, 1974.
  • Louis, J.-F., Parametrization of sub-grid scale processes, ECMWF Seminar, 13–17 September, 1982, and Workshop, 20–24 September, 1982, 8397Eur. Cent. for Medium-Range Weather Forecasts, Reading, England, 1983.
  • Manabe, S., J. L. Holloway, The seasonal variation of the hydrological cycle as simulated by a global model of the atmosphere, J. Geophys. Res, 80, 16171649, 1975.
  • Manabe, S., R. T. Wetherald, Large-Scale Changes in Soil Wetness Induced by an increase in Atmospheric CO2, J. Atmos. Sci., 44, 12111235, 1987.
  • Manabe, S., R. J. Stouffer, M. J. Spelman, K. Bryan, Transient responses of a coupled ocean-atmosphere model to gradual changes of atmospheric CO2. Part 1: Annual Mean Response, J. Clim., 4, 753765, 1991.
  • McAvaney, B. J., W. P. Bourke, K. Puri, A global spectral model for simulation of the general circulation, J. Atmos. Sci., 35, 155783, 1978.
  • McAvaney, B. J., R. A. Colman, The AMIP experiment: The BMRC AGCM configurationRes. Rep. 38, 43Bur. of Meteorol. Res. Cent., Melbourne, Australia, 1993.
  • McAvaney, B. J., andR. A. Colman, 1996,Water vapor and cloud feedbacks in the BMRC GCM, inClimate Sensitivity to Radiative Perturbations: Physical Mechanisms and their Validation, NATO ASI, Ser. I, 34, edited byH. Le Treut, pp.171190,Springer-Verlag,New York,1996.
  • Meehl, G. A., W. M. Washington, A comparison of soil moisture sensitivity in two global climate models, J. Atmos. Sci., 45, 14761492, 1988.
  • Miller, M. J., A. C. M. Beljaars, T. N. Palmer, The sensitivity of the ECMWF model to the parametrization of evaporation from the tropical ocean, J. Clim., 5, 418434, 1992.
  • Palmer, T. N., G. J. Shutts, R. Swinbank, Alleviation of a systematic bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parameterization, Q. J. R. Meteorol. Soc., 112, 10011039, 1986.
  • Potter, G. L., J. M. Slingo, J. Morcrette, R. L. Mobley, R. S. Drach, T. G. Corsetti, D. N. Williams, Cloud forcing: a modeling perspective, workshop on Clouds, Radiative Transfer and the Hydrological Cycle, Nov. 1990, 341372Eur. Cent. for Medium-Range Weather Forecasts, Reading, England, 1990.
  • Randall, et al., Intercomparison and interpretation of surface fluxes in nineteen atmospheric general circulation Models, J. Geophys. Res., 97, 37113724, 1992.
  • Rikus, L. J., The role of clouds in global climate modelingRes. Rep. 25, 37Bur. of Meteorol. Res. Cent., Melbourne, Australia, 1991.
  • Schlesinger, M. E., Quantitative analysis of feedbacks in climate model simulations of CO2 induced warming, Physically Based Modeling and Simulation of Climate and Climate Change, NATO ASI Ser. C, 243M. E. Schlesinger, Kluwer Acad., Norwell Mass., 1988.
  • Schwarzkopf, M. D., S. B. Fels, The simplified exchange method revisited: an accurate, rapid method for computation of infrared cooling rates and fluxes, J. Geophys. Res., 96, 90759096, 1991.
  • Senior, C. A., J. F. B. Mitchell, Carbon dioxide and climate: the impact of cloud parametrization, J. Clim., 6, 393418, 1993.
  • Shine, K. P., A. Sinha, Sensitivity of the Earth's climate to height-dependent changes in the water vapor mixing ratio, Nature, 354, 382384, 1991.
  • Tiedtke, M., The sensitivity of the time mean large-scale flow to cumulus convection in the ECMWF model, Report of Workshop on Convection in Large-scale Numerical ModelsEur. Cent. for Medium-Range Weather Forecasts, Reading, England, 1984.
  • Tiedtke, M., A comprehensive mass flux scheme for cumulus parametrization in large-scale models, Mon. Weath. Rev., 117, 17791800, 1989.
  • Wetherald, R. T., S. Manabe, Cloud cover and climate sensitivity, J. Atmos. Sci., 37, 14851510, 1980.
  • Wetherald, R. T., S. Manabe, Cloud feedback processes in a GCM, J. Atmos. Sci., 45, 13971415, 1988.
  • Yang, S.-K., G. L. Smith, Further study on atmospheric lapse rate regimes, J. Atmos. Sci., 42, 961965, 1985.
  • Zhang, M. H., R. D. Cess, J. J. Hack, J. T. Kiehl, Diagnostic study of climate feedback processes in atmospheric general circulation Models, J. Geophys. Res, 99, 55255537, 1994.
  • Zhang, M. H., J. T. Kiehl, andJ. J. Hack, 1996,Cloud-radiative feedback as produced by different parametrizations of cloud emissivity in CCM2, inClimate Sensitivity to Radiative Perturbations: Physical Mechanisms and their Validation, NATO ASI, Ser. I, 34, pp.213230, edited byH. Le Treut, Springer-Verlag,New York,1996.