SEARCH

SEARCH BY CITATION

Abstract

  1. Top of page
  2. Abstract
  3. References

A new technique for calculating potential anomalies on a sphere due to finite amplitude relief has been developed. We show that by raising the topography to the nth power and expanding this field into spherical harmonics, potential anomalies due to topography on spherical density interfaces can be computed to arbitrary precision. Using a filter for downward continuing the Bouguer anomaly, we have computed a variety of crustal thickness maps for the Moon, assuming both a homogeneous as well as a dual-layered crust. The crustal thickness maps for the homogeneous model give plausible results, but this model is not consistent with the seismic data, petrologic evidence, and geoid to topography ratios, all of which suggest some form of crustal stratification. Several dual-layered models were investigated, and it was found that only models with both upper and lower crustal thickness variations could satisfy the gravity and topography data. These models predict that the entire upper crust has been excavated beneath the major nearside multiring basins. Additionally, significant amounts of lower crustal material was excavated from these basins, especially beneath Crisium. This model also predicts that mantle material should not have been excavated during the South-Pole Aitken basin forming event, and that lower crustal material should be exposed at the surface in this basin.

References

  1. Top of page
  2. Abstract
  3. References
  • Andre, C. G., R. W. Wolfe, I. Andler, Evidence for a high-magnesium subsurface basalt in Mare Crisium from orbital X-ray fluorescence data, Mare Crisium: The View From Luna 24R. B. Merrill, J. J. Papike, 112, Pergamon Press, Tarrytown, N.Y., 1978.
  • Balmino, G., Gravitational potential harmonics from the shape of an homogeneous body, Celestial Mech. Dyn. Astron., 60, 331364, 1994.
  • Bills, B. G., A. J. Ferrari, A lunar density model consistent with topographic, gravitational, librational, and seismic data, J. Geophys. Res., 82, 13061314, 1977.
  • Bratt, S. R., S. C. Solomon, J. W. Head, C. F. Thurber, The deep structure of lunar basins: Implications for basin formation and modification, J. Geophys. Res., 90, 30493064, 1985.
  • Charette, M. P., S. R. Taylor, J. B. Adams, T. B. McCord, The detection of soils of Fra Mauro basalt and anorthositic gabbro composition in the lunar highlands by remote spectral reflectance techniques, Proc. Lunar Sci. Conf., 8th, 10491061, 1977.
  • DeHon, R. A., Thickness of the western mare basalts, Proc. Lunar Planet. Sci. Conf., 10th, 29352955, 1979.
  • DeHon, R. A., J. D. Waskom, Geologic structure of the eastern mare basins, Proc. Lunar Sci. Conf., 7th, 27292746, 1976.
  • Dorman, L. M., T. R. Lewis, Experimental isostasy, 1, Theory of the determination of the Earth's isostatic response to a concentrated load, J. Geophys. Res., 75, 33573365, 1970.
  • Goins, N. R., A. M. Dainty, M. N. Toksöz, Lunar seismology: The internal structure of the Moons, J. Geophys. Res., 86, 50615074, 1981.
  • Haines, E. L., A. E. Metzger, Lunar highland crustal models based on iron concentrations: Isostasy and center-of mass displacement, Proc. Lunar Planet Sci. Conf., 11th, 689718, 1980.
  • Kaula, W. M., Theory of statistical analysis of data distributed over a sphere, Rev. Geophys., 5, 83107, 1967.
  • Lambeck, K., Geophysical Geodesy: The Slow Deformation of the Earth, Clarendon Press, Oxford, England, 1988.
  • Lemoine, F. G., D. E. Smith, M. T. Zuber, G. A. Neumann, D. D. Rowlands, A 70th degree lunar gravity model (GLGM-2) from Clementine and other tracking data, J. Geophys. Res., 102, 16,33916,359, 1997.
  • Lingenfelter, R. E., G. Schubert, Evidence for convection on planetary interiors from first order topography, Moon, 7, 172180, 1973.
  • Neumann, G. A., M. T. Zuber, D. E. Smith, F. G. Lemoine, The lunar crust: Global structure and signature of major basins, J. Geophys. Res., 101, 16,84116,843, 1996.
  • Nozette, S., et al., The Clementine mission to the Moon: Scientific overview, Science, 266, 18351839, 1994.
  • Oldenburg, D. W., The inversion and interpretation of gravity anomalies, Geophysics, 39, 526536, 1974.
  • Parker, R. L., The rapid calculation of potential anomalies, Geophys. J. R. Astron. Soc., 31, 447455, 1972.
  • Parker, R. L., S. P. Huestis, The inversion of magnetic anomalies in the presence of topography, J. Geophys. Res., 79, 15871593, 1974.
  • Phillips, R. J., J. Dvorak, The origin of lunar mascons: Analysis of the Bouguer gravity associated with Grimaldi, Multi-ring BasinsP. H. Schultz, R. B. Merrill, Proc. Lunar Planet. Sci., 12A, 91104, 1981.
  • Phipps Morgan, J., D. K. Blackman, Inversion of combined gravity and bathymetry data for crustal structure: A prescription for downward continuation, Earth Planet. Sci. Lett., 119, 167179, 1993.
  • Pieters, C. M., S. Tompkins, J. W. Head, P. C. Hess, Mineralogy of the mafic anomaly in the South Pole-Aitken basin: Implications for excavation of the lunar mantle, Geophys. Res. Lett., 24, 19031906, 1997.
  • Rapp, R. H., The decay of the spectrum of the gravitational potential and the topography of the Earth, Geophys. J. Int., 99, 449455, 1989.
  • Ryder, G., J. A. Wood, Serenitatis and Imbrium impact melts: Implications for large-scale layering in the lunar crust, Proc. Lunar Sci. Conf., 8th, 655668, 1977.
  • Smith, D. E., M. T. Zuber, G. A. Neumann, F. G. Lemoine, Topography of the Moon from Clementine lidar, J. Geophys. Res., 102, 15911611, 1997.
  • Solomon, S. C., J. W. Head, Lunar mascon basins: Lava filling, tectonics, and evolution of the lithosphere, Rev. Geophys., 18, 107141, 1980.
  • Spudis, P. D., P. A. Davis, A chemical and petrological model of the lunar crust and implications for lunar crustal origin, Proc. Lunar Planet. Sci. Conf. 17th, Part 1, J. Geophys. Res., 91, suppl., E84E90, 1986.
  • Spudis, P. D., B. R. Hawke, P. Lucey, Composition of Orientale basin deposits and implications for the lunar basin-forming process, Proc. Lunar Planet Sci. Conf. 15th, Part 1, J. Geophys. Res., 89, suppl., C197C210, 1984.
  • Spudis, P. D., B. R. Hawke, P. G. Lucey, G. J. Taylor, K. Stockstill, Composition of the ejecta deposits of selected lunar basins from Clementine elemental maps (abstract), Lunar Planet. Sci., XXVII, 12551256, 1996.
  • Thurber, C. H., S. C. Solomon, An assessment of crustal thickness variations on the lunar near side: Models, uncertainties, and implications for crustal differentiation, Proc. Lunar Planet. Sci. Conf., 9th, 34813497, 1978.
  • Toksöz, M. N., A. M. Dainty, S. C. Solomon, K. R. Anderson, Structure of the Moon, Rev. Geophys., 12, 539567, 1974.
  • Varshalovich, D. A., A. N. Moskalev, V. K. Khersonskii, Quantum Theory of Angular Momentum, World Sci., Singapore, 1988.
  • Warren, P. H., The magma ocean concept and lunar evolution, Annu. Rev. Earth Planet. Sci., 13, 201240, 1985.
  • Wasson, J. T., P. H. Warren, Contribution of the mantle to the lunar asymmetry, Icarus, 44, 752771, 1980.
  • Wieczorek, M. A., R. J. Phillips, The structure and compensation of the lunar highland crust, J. Geophys. Res., 102, 10,93310,943, 1997.
  • Williams, K. K., M. T. Zuber, Re-evaluation of mare thicknesses based on lunar crater depth-diameter relationships (abstract), Lunar Planet. Sci., XXVII, 14411442, 1996.
  • Wood, J. A., Bombardment as a cause of the lunar asymmetry, Moon, 8, 73103, 1973.
  • Zuber, M. T., D. E. Smith, F. G. Lemoine, G. A. Neumann, The shape and internal structure of the Moon from the Clementine mission, Science, 266, 18391843, 1994.