SEARCH

SEARCH BY CITATION

References

  • Baekelandt, B., F. Olyslager, D. E. Zutter, An analysis of uniaxial bianisotropic two-dimensional periodic and nonperiodic structures using a boundary integral equation method, Radio Sci., 32, 13611390, 1997.
  • Beker, B., K. R. Umashankar, A. Taflove, Numerical analysis and validation of the combined field surface integral equations for electromagnetic scattering by arbitrary shaped two-dimensional anisotropic objects, IEEE Trans. Antennas Propag., 37, 15731581, 1989.
  • Canning, F. X., Sparse approximation for solving integral equations with oscillatory kernels, SIAM J. Sci. Stat. Comput., 13, 7187, 1992.
  • Coifman, R., V. Rokhlin, S. Wandzura, The fast multipole method for the wave equation: A pedestrian approach, IEEE Antennas Propag. Mag., 35, 712, 1993.
  • Engheta, N., W. D. Murphy, V. Rokhlin, M. S. Vassiliou, The fast multipole method (FMM) for electromagnetic scattering problems, IEEE Trans. Antennas Propag., 40, 634641, 1992.
  • Epton, M. A., B. Dembart, Multipole translation theory for the 3-D Laplace and Helmholtz equations, SIAM J. Sci. Comput., 16, 865897, 1995.
  • Graglia, R. D., P. L. E. Uslenghi, Electromagnetic scattering from anisotropic materials, II, Computer code and numerical results in two-dimensions, IEEE Trans. Antennas Propag., 35, 225231, 1987.
  • Graglia, R. D., P. L. E. Uslenghi, R. E. Zich, Dispersion relations for bianisotropic materials and its symmetry properties, IEEE Trans. Antennas Propag., 39, 8390, 1991.
  • Hanson, G. W., Complex media microstrip ridge structures: Formulation and basic characteristics of ferrite structures, IEEE Trans. Microwave Theory Tech., 44, 15631568, 1996.
  • Harrington, R. F., Time Harmonic Electromagnetic Fields, McGraw-Hill, New York, 1961.
  • He, S., Uniform approximation to the scattering and propagation problem for a stratified bi-anisotropic slab, Int. J. Infrared Millimeter Waves, 17, 415431, 1996.
  • Jakoby, B., Scattering of obliquely incident waves by an impedance cylinder with inhomogeneous bianisotropic coating, IEEE Trans. Antennas Propag., 45, 648655, 1997.
  • Jakoby, B., A.-R. Baghai-Wadji, Analysis of bianisotropic layered structures with laterally periodic inhomogeneities — An eigenpolar formulation, IEEE Trans. Antennas Propag., 44, 615626, 1996.
  • Kamenetskii, E. O., On the technology of making chiral and bianisotropic waveguides for microwave propagation, Microwave Opt. Tech. Lett., 11, 103107, 1996.
  • Knab, J. J., Interpolation of band-limited functions using the approximate prolate series, IEEE Trans. Inf. Theory, 25, 717720, 1979.
  • Kong, J. A., Electromagnetic Wave Theory, John Wiley, New York, 1990.
  • Lakhtakia, A., Scattering by an infinitely-long bianisotropic cylinder with electrically small, convex cross-section, Opt. Commun., 80, 303306, 1991.
  • Lakhtakia, A., General theory of the Purcell-Pennypacker scattering approach and its extension to bianisotropic scatterers, Astrophys. J., 394, 494499, 1992.
  • Lakhtakia, A., Beltrami Fields in Chiral Media, World Sci., Singapore, 1995.
  • Lakhtakia, A., B. Shanker, Beltrami fields within continuous source regions, volume integral equations, scattering algorithms and the extended Maxwell-Garnett model, Int. J. Appl. Electromagn. Mater., 4, 6582, 1993.
  • Lakhtakia, A., W. S. Weiglhofer, Scattering by an electrically small bianisotropic sphere in a gyroelectromagnetic uniaxial medium, IEE Proc. -H, Microwaves Antennas Propag., 139, 217220, 1992.
  • Lakhtakia, A., W. S. Weiglhofer, On light propagation in helicoidal bianisotropic mediums, Proc. R. Soc. London, Ser. A, 448, 419437, 1995.
  • Lu, C. C., W. C. Chew, Fast algorithm for solving hybrid integral equations, IEE Proc. H, 140, 455460, 1992.
  • Lu, C. C., W. C. Chew, A multilevel algorithm for solving boundary integral wave scattering, Microwave Opt. Tech. Lett., 7, 466470, 1994.
  • Massoudi, H., N. J. Damaskos, P. L. E. Uslenghi, Scattering by a composite and anisotropic circular cylindrical structure: Exact solution, Electromagnetics, 8, 7183, 1988.
  • Michielssen, E., On the windowed translation operator for FMM, internal note, Univ. of Ill., Urbana-Champaign, 1997.
  • Michielssen, E., A. Boag, A multilevel matrix decomposition algorithm for analyzing scattering from large structures, IEEE Trans. Antennas Propag., 44, 10861093, 1996.
  • Michielssen, E., A. F. Peterson, R. Mittra, Oblique scattering from inhomogeneous cylinders using a coupled integral formulation with triangular cells, IEEE Trans. Antennas Propag., 39, 485490, 1991.
  • Monzon, J. C., Two-dimensional scattering by a homogeneous anisotropic rod, IEEE Trans. Antennas Propag., 34, 12431249, 1986.
  • Monzon, J. C., Three-dimensional scattering by an infinite homogeneous anisotropic circular cylinder: A spectral approach, IEEE Trans. Antennas Propag., 35, 670682, 1987.
  • Monzon, J. C., On surface integral representation for homogeneous anisotropic regions: Two-dimensional case, IEEE Trans. Antennas Propag., 36, 14011406, 1988.
  • Post, E. J., Formal Structure of Electromagnetics, North Holland, New York, 1962.
  • Rokhlin, V., Rapid solutions of integral equations of scattering theory in two dimensions, J. Comput. Phys., 86, 414439, 1990.
  • Saad, Y., Iterative Methods for Sparse Linear Systems, PWS, Boston, Mass., 1996.
  • Samaddar, S. N., Scattering of plane waves from an infinitely long cylinder of anisotropic materials at oblique incidence with an application to electronic scanning antenna, Appl. Sci. Res., Ser. B, 10, 385411, 1962.
  • Shanker, B., E. Michielssen, Oblique scattering from an inhomogeneous chiral cylinder using axial beltrami fields and the fast multipole method, J. Opt. Soc. Am. A, Opt. Image Sci., 14, 27862799, 1997.
  • Uslenghi, P. L. E., TE-TM decoupling for guided propagation in bianisotropic media, IEEE Trans. Antennas Propag., 45, 284286, 1996.
  • Wagner, R. L., W. C. Chew, A ray-propagation fast multipole algorithm, Microwave Opt. Tech. Lett., 7, 435438, 1994.
  • Weiglhofer, W. S., Fields and potentials in general uniaxial bianisotropic media, II, General sources and inhomogeneities, Int. J. Appl. Electromagn. Mater., 7, 19, 1996.
  • Wilton, D. R., S. M. Rao, A. W. Glisson, D. H. Schaubert, O. M. Al-Bundak, C. M. Butler, Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains, IEEE Trans. Antennas Propag., 32, 276281, 1984.