SEARCH

SEARCH BY CITATION

References

  • Bérenger, J.-P., A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114, 185200, 1994.
  • Bérenger, J.-P., Perfectly matched layer for the FDTD solution of wave-structure interaction problems, IEEE Trans. Antennas Propag., 441, 110117, 1996a.
  • Bérenger, J.-P., Three-dimensional perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 127, 363379, 1996b.
  • Chew, W. C., Waves and Fields in Inhomogeneous Media, Van Nostrand Reinhold, New York, 1990.
  • DePourcq, M., Field and power-density calculations in closed microwave systems by three-dimensional finite differences, IEE Proc. Part H, Microwaves Antennas Propag., 1326, 360368, 1985.
  • Deveze, T., L. Beaulie, W. Tabbara, A fourth order scheme for the FDTD algorithm applied to Maxwell equations, IEEE Antennas and Propag. Soc. Int. Symp., 1, 346349, 1992.
  • Fang, J., Time domain finite difference computation for Maxwell's equations, Ph.D. thesis,Univ. of Calif. at Berkeley,1989.
  • Gürel, L., U. Oğuz, Signal-engineering techniques to reduce the sinusoidal steady-state error in the FDTD methodRes. Rep. BILUN/EEE/LG-9701Bilkent Univ., Ankara, Turkey, 1997.
  • Harrington, R. F., Field Computation by Moment Methods, Krieger, Melbourne, Fla., 1982.
  • Kunz, K. S., R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics, CRC Press, Boca Raton, Fla., 1993.
  • Lindman, E. L., “Free-space” boundary conditions for the time dependent wave equation, J. Comput. Phys., 18, 6678, 1975.
  • Manry, C. W., S. L. Broschat, J. B. Schneider, Higher-order FDTD methods for large problems, Appl. Comput. Electromagn. Soc. J., 102, 1729, 1995.
  • Merewether, D. E., Transient currents on a body of revolution by an electromagnetic pulse, IEEE Trans. Electromagn. Compat., 132, 4144, 1971.
  • Merewether, D. E., R. Fisher, F. W. Smith, On implementing a numeric Huygen's source scheme in a finite difference program to illuminate scattering bodies, IEEE Trans. Nuclear Sci., 276, 18291833, 1980.
  • , Computational ElectromagneticsE. K. Miller, L. Medgyesi-Mitschang, E. H. Newman, Inst. of Electr. and Electron. Eng., New York, 1992.
  • Mur, G., Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations, IEEE Trans. Electromagn. Compat., EMC-234, 377382, 1981.
  • Omick, S. R., S. P. Castillo, A new finite-difference time-domain algorithm for the accurate modeling of wide-band electromagnetic phenomena, IEEE Trans. Electromagn. Compat., EMC-352, 215222, 1993.
  • Shlager, K. L., J. B. Schneider, A selective survey of the finite-difference time-domain literature, IEEE Antennas Propag. Mag., 374, 3956, 1995.
  • Tafiove, A., Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems, IEEE Trans. Electromagn. Compat., EMC-222, 191202, 1980.
  • Taflove, A., Review of the formulation and applications of the finite-difference time-domain method for numerical modeling of electromagnetic wave interactions with arbitrary structures, Wave Motion, 106, 547582, 1988.
  • Taflove, A., Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, Norwood, Mass., 1995.
  • Taflove, A., M. E. Brodwin, Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell's equations, IEEE Trans. Microwave Theory Tech., MTT-238, 623630, 1975.
  • Taflove, A., K. Umashankar, Radar cross section of general three-dimensional scatterers, IEEE Trans. Electromagn. Compat., EMC-254, 433440, 1983.
  • Taflove, A., K. R. Umashankar, Review of FD-TD numerical modeling of electromagnetic wave scattering and radar cross section, Proc. IEEE, 775, 682699, 1989.
  • Taflove, A., K. R. Umashankar, T. G. Jurgens, Validation of FD-TD modeling of the radar cross section of three-dimensional structures spanning up to nine wavelengths, IEEE Trans. Antennas Propag., AP-336, 662666, 1985.
  • Umashankar, K. R., A. Taflove, A novel method to analyze electromagnetic scattering of complex objects, IEEE Trans. Electromagn. Compat., EMC-244, 397405, 1982.
  • Yee, K. S., Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE Trans. Antennas Propag., AP-144, 302307, 1966.