SEARCH

SEARCH BY CITATION

References

  • Brusseau, M. L., Application of a multiprocess nonequilibrium sorption model to solute transport in a stratified porous medium, Water Resour. Res., 27, 589595, 1991.
  • Chantong, A., F. E. Massoth, Restrictive diffusion in aluminas, AIChE J., 29, 725731, 1983.
  • Chen, H. T., D. F. Othmer, Computing diffusion coefficients in binary gas systems—viscosities in an equation and nomogram, Ind. Eng. Chem. Process Design Develop., 1, 249254, 1962.
  • Crittenden, J. C., N. J. Hutzler, D. G. Geyer, J. L. Oravitz, G. Friedman, Transport of organic compounds with saturated groundwater flow: Model development and parameter sensitivity, Water Resour. Res., 22, 271284, 1986.
  • Cunningham, J. A., C. J. Werth, M. Reinhard, andP. V. Roberts, Effects of grain-scale mass transfer on the transport of volatile organics through sediments, 1, Model development,Water Resour. Res., 12.
  • Farrell, J., Desorption Equilibrium and kinetics of chlorinated solvents on model solids, aquifer sediments, and soil, Ph.D. thesis,Stanford Univ., Stanford, Calif., 1993.
  • Farrell, J., M. Reinhard, Desorption of halogenated organics from model solids, sediments, and soil under unsaturated conditions, 2, Kinetics, Environ. Sci. Technol., 28, 6372, 1994.
  • Fetter, C. W., Contaminant Hydrogeology, 5253, Macmillan, New York, 1993.
  • Gossett, J. M., Measurement of Henry's law constant for C1 and C2 chlorinated hydrocarbons, Environ. Sci. Technol., 21, 202208, 1987.
  • Grathwohl, P., M. Reinhard, Desorption of trichloroethylene in aquifer material: Rate limitation at the grain scale, Environ. Sci. Technol., 27, 23602366, 1993.
  • Haggerty, R., Multiple-rate mass transfer for modeling diffusion and surface reactions in media with pore scale heterogeneity, Stanford Univ., Stanford, Calif., 1995.
  • Hand, D. W., J. C. Crittenden, W. E. Thacker, Simplified models for design of fixed-bed adsorption systems, J. Environ. Eng. N. Y., 110, 440456, 1984.
  • Hirato, Y., O. Nakasugi, M. Yoshioka, K. Sumi, Groundwater pollution by volatile organochlorines in Japan and related phenomena in the subsurface environment, Water Sci. Technol., 25, 916, 1992.
  • Hutzler, N. J., J. C. Crittenden, J. S. Gierke, A. S. Johnson, Transport of organic compounds with saturated groundwater flow: Experimental results, Water Resour. Res., 22, 285292, 1986.
  • Lesage, S., R. E. Jackson, M. W. Priddle, P. G. Riemann, Occurrence and fate of organic solvent residues in anoxic groundwater at the Gloucester Landfill, Canada, Environ. Sci. Technol., 24, 559566, 1990.
  • Olivieri, A. W., D. M. Eisenberg, M. R. Kurtovich, L. Pettegrew, Groundwater contamination in Silicon Valley, J. Water Resour. Plann. Manage., 111, 346358, 1985.
  • Pignatello, J. J., Slowly reversible sorption of aliphatic halocarbons in soils, 1, Formation of residual fractions, Environ. Toxicol. Chem., 9, 11071115, 1990a.
  • Pignatello, J. J., Slowly reversible sorption of aliphatic halocarbons in soils, II, Mechanistic aspects, Environ. Toxicol. Chem., 9, 11171126, 1990b.
  • Polanyi, M., Adsorption of gases (vapors) by a solid non-volatile adsorbent, Verh. Deut. Physik. Ges., 18, 5580, 1916.
  • Reklaitis, G. V., Introduction to Material and Energy Balances, append. 4, John Wiley, New York, 1983.
  • Robinson, J. A., Determining microbial kinetic parameters using nonlinear regression analysis: Advantages and limitations in microbial ecology, Advances in Microbial Ecology, K. C. Marshall, 61114, Plenum, New York, 1985.
  • Roux, P. H., W. F. Althoff, Investigation of organic contamination of ground water in South Brunswick Township, New Jersey, Ground Water, 18, 464471, 1980.
  • Schlichting, H., Boundary Layer Theory, 3-33-4, McGraw-Hill, New York, 1979.
  • Smith, L. H., P. K. Kitanidis, P. L. McCarty, Numerical modeling and uncertainties in rate coefficients for methane cometabolism by a methane-oxidizing mixed culture, Biotech. Bioeng., 53(3), 320331, 1997.
  • Steinberg, S. M., J. J. Pignatello, B. L. Sawhney, Persistence of 1,2-dibromoethane in soils: Entrapment in intraparticle micropores, Environ. Sci. Technol., 21, 12011208, 1987.
  • Wakao, N., J. M. Smith, Diffusion in catalyst pellets, Chem. Eng. Sci., 17, 825834, 1962.
  • Weber, W. J., W. Huang, A distributed reactivity model for sorption by soils and sediments, 4, Intraparticle heterogeneity and phase-distribution relationships under nonequilibrium conditions, Environ. Sci. Technol., 26, 19551962, 1992.
  • Werth, C. J., Analysis of trichloroethylene desorption from silica gel and natural sediments using column studies, numerical modeling, and nuclear magnetic resonance spectroscopy, Ph.D. thesis,Stanford Univ., Stanford, Calif., 1996.
  • Werth, C. J., M. Reinhard, Effects of temperature on trichloroethylene desorption from silica gel and natural sediments, 1, Isotherms, Environ. Sci. Technol., 31(3), 689696, 1997a.
  • Werth, C. J., M. Reinhard, Effects of temperature on trichloroethylene desorption from silica gel and natural sediments, 2, Kinetics, Environ. Sci. Technol., 31(3), 697703, 1997b.
  • Westrick, J. J., J. W. Mellow, R. F. Thomas, The groundwater supply survey, J. Am. Water Works Assoc., 76, 5259, 1984.
  • Wilke, C. R., P. Chang, Correlation of diffusion coefficients in dilute solutions, AIChE J., 11, 264270, 1955.
  • Yiacoumi, S., C. Tien, A model of organic solute uptake from aqueous solutions by soils, Water Resour. Res., 30, 571580, 1994.