SEARCH

SEARCH BY CITATION

References

  • Archer, D., Modeling the calcite lysocline, J. Geophys. Res., 9C9, 17,03717,050, 1991.
  • Archer, D., A data-driven model of the global calcite lysocline, Global Biogeochem. Cycles, 10, 511526, 1996.
  • Archer, D., E. Maier-Reimer, Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration, Nature, 367, 260263, 1994.
  • Archer, D., S. Emerson, C. R. Smith, Direct measurement of the diffusive sublayer at the deep sea floor using oxygen microelectrodes, Nature, 340, 623626, 1989.
  • Archer, D., H. Kheshgi, E. Maier-Reimer, Multiple timescales for the neutralization of fossil fuel CO2, Geophys. Res. Lett., 24, 405408, 1997.
  • Archer, D., M. Lyle, K. Rodgers, P. Froelich, What controls opal preservation in tropical deep-sea sediments?, Paleoceanography, 8, 721, 1993.
  • Bacastow, R. B., E. Maier-Reimer, Circulation model of the oceanic carbon cycle, Clim. Dyn., 4, 95125, 1990.
  • Balsam, W. L., Carbonate dissolution on the Muir Seamount (Western North Atlantic): Interglacial/glacial changes, J. Sediment. Petrol., 53, 719731, 1983.
  • Barnola, J. M., D. Raynaud, Y. S. Korotkevich, C. Lorius, Vostok ice core provides 160,000-year record of atmospheric CO2, Nature, 329, 408414, 1987.
  • Berner, R. A., A. C. Lasaga, R. M. Garrels, The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years, Am. J. Sci., 283, 641683, 1983.
  • Boudreau, B. P., Is burial velocity a master parameter for bioturbation?, Geochim. Cosmochim. Acta, 58, 12431249, 1994.
  • Boudreau, B. P., Diagenetic Models and Their Implementation, 414, Springer-Verlag, New York, 1997.
  • Boyle, E. A., The role of vertical chemical fractionation in controlling late Quaternary atmospheric carbon dioxide, J. Geophys. Res., 93, 1570115717, 1988.
  • Broecker, W. S., T.-H. Peng, Tracers in the Sea, 690, Lamont-Doherty Earth Observatory, Palisades, N.Y., 1982.
  • Broecker, W. S., T. Takahashi, Neutralization of fossil fuel CO2 by marine calcium carbonate, The Fate of Fossil Fuel CO2 in the OceansN. R. Anderson, A. Malahoff, 213241, Plenum, New York, 1977.
  • Broecker, W. S., S. Sutherland, W. Smethie, T.-H. Peng, G. Östlund, Oceanic radiocarbon: Separation of the natural and bomb components, Global Biogeochem. Cycles, 9, 263288, 1995.
  • Brzezinski, M. A., The Si:C:N ratio of marine diatoms: Interspecific variability and the effect of some environmental variables, J. Phycology, 21, 347357, 1985.
  • Charles, C. D., P. N. Froelich, M. A. Zibello, R. A. Mortlock, J. J. Morley, Biogenic opal in Southern Ocean sediments over the last 450,000 years: Implications for surface water chemistry and circulation, Paleoceanography, 6, 697728, 1991.
  • Chipman, D. W., J. Marra, T. Takahashi, Primary production at 47°N and 20°W in the North Atlantic Ocean: A comparison between the 14C incubation method and the mixed layer carbon budget, Deep Sea Res., Part II, 40, 151169, 1993.
  • Crowley, T. J., Calcium-carbonate preservation patterns in the central North Atlantic during the last 150,000 years, Mar. Geol., 51, 114, 1983.
  • Crowley, T. J., Late quaternary carbonate changes in the North/Atlantic and Atlantic/Pacific comparisons, The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, Geophys. Monogr. Ser., 32E. T. Sundquist, W. S. Broecker, 271284, AGU, Washington, D.C., 1985.
  • Culberson, C. H., R. M. Pytkowicz, Effect of pressure on carbonic acid, boric acid and the pH in sea water, Limnol. Oceanogr., 13, 403417, 1968.
  • Delaney, M. L., E. A. Boyle, Tertiary paleoceanic chemical variability: Unintended consequences of simple geochemical models, Paleoceanography, 3, 137156, 1988.
  • DeMaster, D. J., The supply and accumulation of silica in the marine environment, Geochim. Cosmochim. Acta, 45, 17151732, 1981.
  • Dickson, A. G., J. P. Riley, The estimation of acid dissociation constants in seawater media from potentiometric titrations with strong base, I, The ionic product of water — Kw, Mar. Chem., 7, 8999, 1979.
  • Duplessy, J.-C., L. D. Labeyrie, A. Juillet-Leclerc, F. Maitre, J. Dupart, M. Sarnthein, Surface salinity reconstruction of the North Atlantic Ocean during the last glacial maximum, Oceanol. Acta, 14, 311324, 1991.
  • Duplessy, J.-C., L. D. Labeyrie, M. Paterne, S. Hovine, T. Fichefet, J. Duprat, M. Labracherie, High latitude deep water sources during the last glacial maximum and the intensity of the global ocean circulation, The South Atlantic: Present and Past CirculationG. Wefer, et al., 445460, Springer-Verlag, New York, 1996.
  • Dymond, J., M. Lyle, Flux comparisons between sediments and sediment traps in the eastern tropical Pacific: Implications for CO2 variation during the Pleistocene, Limnol. Oceanogr., 30, 699712, 1985.
  • Edmond, J. M., J. M. T. M. Gieskes, On the calculation of the degree of saturation of sea water with respect to calcium carbonate under in situ conditions, Geochim. Cosmochim. Acta, 34, 12611291, 1970.
  • Eppley, R. W., B. J. Peterson, Particulate organic matter flux and planktonic new production in the deep ocean, Nature, 282, 677680, 1979.
  • Farrell, J. W., W. L. Prell, Climatic change and CaCO3 preservation: An 800,000 year bathymetric reconstruction from the central equatorial Pacific Ocean, Paleoceanography, 4, 447466, 1989.
  • Farrell, J. W., W. L. Prell, Pacific CaCO3 preservation and δ18O since 4 Ma: Paleoceanic and paleoclimatic implications, Paleoceanography, 6, 485498, 1991.
  • Friedli, H., H. Loetscher, H. Oeschger, U. Siegenthaler, B. Stauffer, Ice core record of the 13C/12C record of atmospheric CO2 in the past two centuries, Nature, 324, 237238, 1986.
  • Froelich, P. N., V. Blanc, R. A. Mortlock, S. N. Chillrud, W. Dunstan, A. Udomkit, T.-H. Peng, River fluxes of dissolved silica to the ocean were higher during glacials: Ge/Si in diatoms, rivers, and oceans, Paleoceanography, 7, 739767, 1992.
  • Hales, B., S. Emerson, Calcite dissolution in sediments of the Ontong-Java Plateau: In situ measurements of pore water O2 and pH, Global Biogeochem. Cycles, 10, 527541, 1996.
  • Heinze, C., Zur Erniedrigung des atmosphärischen Kohlendioxidgehalts durch den Weltozean während der letzten Eiszeit, Ph.D. thesis,Max-Planck-Inst. für Meteorol.,, 180 pp.,Hamburg, Germany,1990.
  • Heinze, C., T. J. Crowley, Sedimentary response to ocean gateway circulation changes, Paleoceanography, 12, 742754, 1997.
  • Heinze, C., E. Maier-Reimer, The Hamburg Oceanic Carbon Cycle Circulation ModelTech. Rep. 5, 32Deutsch. Klimarechenzentrum, Hamburg, Germany, 1992.
  • Heinze, C., E. Maier-Reimer, K. Winn, Glacial pCO2 reduction by the world ocean: Experiments with the Hamburg carbon cycle model, Paleoceanography, 6, 395430, 1991.
  • Heinze, C., P. Schlosser, E. Maier-Reimer, Transient tracers in a global OGCM: Source functions and simulated distributions, J. Geophys. Res., 103C8, 15,90315,922, 1998.
  • Hellerman, S., M. Rosenstein, Normal monthly wind stress over the world ocean with error estimates, J. Phys. Oceanogr., 13, 10931104, 1983.
  • Herguera, J. C., Deep-sea benthic foraminifera and biogenic opal: Glacial to postglacial productivity changes in the Western Equatorial Pacific, Mar. Micropaleontol., 19, 7998, 1992.
  • Honjo, S., S. J. Manganini, J. J. Cole, Sedimentation of biogenic matter in the deep ocean, Deep Sea Res., Part A, 29, 609625, 1982.
  • Hurd, D. C., Factors affecting solution rate of biogenic opal in seawater, Earth Planet. Sci. Lett., 15, 411417, 1972.
  • Hurd, D. C., Interactions of biogenic opal, sediment and seawater in the Central Equatorial Pacific, Geochim. Cosmochim. Acta, 37, 22572282, 1973.
  • Jahnke, R. A., The global cean flux of particulate organic carbon: Areal distribution and magnitude, Global Biogeochem. Cycles, 10, 7188, 1996.
  • Keir, R. S., The dissolution kinetics of biogenic calcium carbonates in seawater, Geochim. Cosmochim. Acta, 44, 241252, 1980.
  • Keller, G., J. A. Barron, Paleoceanographic implications of Miocene deep-sea hiatuses, Geol. Soc. Am. Bull., 94, 590613, 1983.
  • Kumar, N., R. F. Anderson, R. A. Mortlock, P. N. Froelich, P. Kubik, B. Dittrich-Hannen, M. Suter, Increased biological productivity and export production in the glacial Southern Ocean, Nature, 378, 675680, 1995.
  • Lasaga, A. C., R. A. Berner, R. M. Garrels, An improved geochemical model of atmospheric CO2 fluctuations over the past 100 million years, The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, Geophys. Monogr. Ser., 32E. T. Sundquist, W. S. Broecker, 397411, AGU, Washington, D.C., 1985.
  • Leinen, M., D. Cwienk, G. R. Heath, P. E. Biscaye, V. Kolla, J. Thiede, J. P. Dauphin, Distribution of biogenic silica and quartz in recent deep-sea sediments, Geology, 14, 199203, 1986.
  • Levitus, S., Climatological atlas of the world ocean, Prof. Pap., 13, Natl. Oceanic and Atmos. Admin., U.S. Dept. of Commer., Washington, D.C., 1982.
  • Li, Y.-H., S. Gregory, Diffusion of ions in sea water and in deep-sea sediments, Geochim. Cosmochim. Acta, 38, 703714, 1974.
  • Lisitsyn, A. P., Basic relationships in distribution of modern siliceous sediments and their connection with climatic zonation, 1, Int. Geol. Rev., 95, 631652, 1986a.
  • Lisitsyn, A. P., Basic relationships in distribution of modern siliceous sediments and their connection with climatic zonation, 2, Int. Geol. Rev., 96, 842865, 1986b.
  • Lisitsyn, A. P., Basic relationships in distribution of modern siliceous sediments and their connection with climatic zonation, 3, Int. Geol. Rev., 98, 11141130, 1986c.
  • Lisitzin, A. P., Distribution of siliceous microfossils in suspension and bottom sediments, The Micropaleontology of OceansB. M. Funnell, W. R. Reidel, 173195, Cambridge Univ. Press, New York, 1971.
  • Lorenz, S., B. Grieger, P. Helbig, K. Herterich, Investigating the sensitivity of the Atmospheric General Circulation Model ECHAM 3 to paleoclimatic boundary conditions, Geol. Rundsch., 85, 513524, 1996.
  • Lyle, M., D. W. Murray, B. P. Finney, J. Dymond, J. M. Robbins, K. Brooksforce, The record of late pleistocene biogenic sedimentation in the Eastern Tropical Pacific Ocean, Paleoceanography, 3, 3959, 1988.
  • Maier-Reimer, E., On the effect of sediments on the airborne fraction, Proceedings of the Third International Conference on Analysis and Evaluation of Atmospheric CO2 data present and Past, Hinterzarten, 16–20 October 1989Rep. 59, 217220Environ. Pollut. Monit. and Res. Programme, World Meteorol. Organ., Geneva, 1989.
  • Maier-Reimer, E., Geochemical cycles in an ocean general circulation model. Pre-industrial Tracer Distributions, Global Biogeochem. Cycles, 7, 645677, 1993.
  • Maier-Reimer, E., R. B. Bacastow, Modelling of geochemical tracers in the ocean, Climate-Ocean InteractionM. E. Schlesinger, 233267, Kluwer Acad., Norwell, Mass., 1990.
  • Maier-Reimer, E., K. Hasselmann, Transport and storage of CO2 in the ocean — an inorganic ocean-circulation carbon cycle model, Clim. Dyn., 2, 6390, 1987.
  • Maier-Reimer, E., U. Mikolajewicz, K. Hasselmann, Mean circulation of the Hamburg LSG OGCM and its sensitivity to the thermohaline surface forcing, J. Phys. Oceanogr., 23, 731757, 1993.
  • Martin, J. H., G. A. Knauer, D. M. Karl, W. W. Broenkow, VERTEX: Carbon cycling in the northeast Pacific, Deep Sea Res., Part A, 34, 267285, 1987.
  • Mikolajewicz, U., E. Maier-Reimer, T. J. Crowley, K.-Y. Kim, Effect of Drake and Panamanian gateways on the circulation of an ocean model, Paleoceanography, 8, 409426, 1993.
  • Mortlock, R. A., C. D. Charles, P. N. Froelich, M. A. Zibello, J. Saltzman, J. D. Hays, L. H. Burckle, Evidence for lower productivity in the Antarctic Ocean during the last glaciation, Nature, 351, 220223, 1991.
  • Munhoven, G., L. M. François, Glacial-interglacial variability of atmospheric CO2 due to changing continental silicate rock weathering: A model study, J. Geophys. Res., 101, 2142321437, 1996.
  • Najjar, R. G., J. L. Sarmiento, J. R. Toggweiler, Downward transport and fate of organic matter in the ocean: Simulations with a general circulation model, Global Biogeochem. Cycles, 6, 4576, 1992.
  • Neftel, A., E. Moor, H. Oeschger, B. Stauffer, Evidence from polar ice cores for the increase in atmospheric CO2 in the past two centuries, Nature, 315, 4547, 1985.
  • Nelson, D. M., P. Tréguer, M. A. Brzezinski, A. Leynaert, B. Quéguiner, Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship with biogenic sedimentation, Global Biogeochem. Cycles, 9, 359372, 1995.
  • Packard, T. T., M. Denis, M. Rodier, P. Garfield, Deepocean metabolic CO2 production: Calculations from ETS activity, Deep Sea Res., Part A, 35, 371382, 1988.
  • Parsons, T. R., M. Takahashi, Biological Oceanographic Processes, 186, Pergamon, Tarrytown, N.Y., 1973.
  • Peterson, L. C., W. L. Prell, Carbonate preservation and rates of climatic change: An 800 kyr record from the Indian Ocean, The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, Geophys. Monogr. Ser., 32E. T. Sundquist, W. S. Broecker, 251269, AGU, Washington, D.C., 1985.
  • Ragueneau, O., A. Leynaert, P. Tréguer, D. J. DeMaster, R. F. Anderson, Opal studied as a marker of paleo-productivity, EOS trans., AGU, 7749, 491493, 1996.
  • Roy, R. N., L. N. Roy, M. Lawson, K. M. Vogel, C. Porter-Moore, W. Davis, F. J. Millero, D. M. Campbell, Determination of the ionization constants of carbonic acid in seawater, Mar. Chem., 44, 249259, 1993.
  • Sanyal, A., N. G. Hemming, G. N. Hanson, W. S. Broecker, Evidence for a higher pH in the glacial ocean from boron isotopes in foraminifera, Nature, 373, 234236, 1995.
  • Schink, D. R., N. L. Guinasso Jr., Effects of bioturbation on sediment-seawater interactions, Mar. Geol., 23, 133154, 1977.
  • Schink, D. R., N. L. Guinasso Jr., Redistribution of dissolved and adsorbed materials in abyssal marine sediments undergoing biological stirring, Am. J. Sci., 278, 687702, 1978.
  • Shackleton, N. J., N. G. Pisias, Atmospheric carbon dioxide, orbital forcing, and climate, The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, Geophys. Monogr. Ser., 32E. T. Sundquist, W. S. Broecker, 303317, AGU, Washington, D.C., 1985.
  • Six, K., E. Maier-Reimer, Effects of plankton dynamics on seasonal carbon fluxes in an ocean general circulation model, Global Biogeochem. Cycles, 10, 559583, 1996.
  • Soetaert, K., P. M. J. Herman, J. J. Middelburg, C. Heip, H. S. deStigter, T. C. E. vanWeering, E. Epping, W. Helder, Modeling 210Pb-derived mixing activity in ocean margin sediments: Diffusive versus nonlocal mixing, J. Mar. Res., 54, 12071227, 1996.
  • Staffelbach, T., B. Stauffer, A. Sigg, H. Oeschger, CO2 measurements from polar ice cores: More data from different sites, Tellus, Ser. B, 43B, 9196, 1991.
  • Suess, E., Particulate organic carbon flux in the oceans — Surface productivity and oxygen utilization, Nature, 288, 260263, 1980.
  • Takahashi, T., W. S. Broecker, S. Langer, Redfield ratio based on chemical data from isopycnal surfaces, J. Geophys. Res., 90, 69076924, 1985.
  • Tréguer, P., D. M. Nelson, A. J. Van Bennekom, D. J. DeMaster, A. Leynaert, B. Quéguiner, The balance of silica in the world ocean: A re-estimate, Science, 268, 375379, 1995.
  • Ullman, W. J., R. C. Aller, Diffusion coefficients in nearshore marine environments, Limnol. Oceanogr., 27, 552556, 1982.
  • Van Bennekom, A. J., Silica signals in the South Atlantic, The South Atlantic: Present and Past CirculationG. Wefer, et al., 345354, Springer-Verlag, New York, 1996.
  • Van Bennekom, A. J., A. G. J. Buma, R. F. Nolting, Dissolved aluminum in the Weddell-Scotia Confluence and the effect of Al on the dissolution kinetics of biogenic silica, Mar. Chem., 35, 423434, 1991.
  • Van Bennekom, A. J., J. H. F. Jansen, S. J. van derGaast, J. M. vanIperen, J. Pieters, Aluminium-rich opal: An intermediate in the preservation of biogenic silica in the Zaïre (Congo) deep-sea fan, Deep Sea Res., Part A, 36, 173190, 1989.
  • Van Cappellen, P., L. Qiu, Biogenic silica dissolution in sediments of the Southern Ocean, I, Solubility, Deep Sea Res., Part II, 44, 11091128, 1997a.
  • Van Cappellen, P., L. Qiu, Biogenic silica dissolution in sediments of the Southern Ocean, II, Kinetics, Deep Sea Res., Part II, 44, 11291149, 1997b.
  • Vanderborght, J.-P., R. Wollast, G. Billen, Kinetic models of diagenesis in disturbed sediments, 1, Mass transfer properties and silica diagenesis, Limnol. Oceanogr., 22, 787793, 1977.
  • Volk, T., M. Hoffert, Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven pCO2 changes, The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, Geophys. Monogr. Ser., 32E. T. Sundquist, W. S. Broecker, 99110, AGU, Washington, D.C., 1985.
  • Winguth, A. M. E., Assimilation von δ13C-Daten aus marinen Sedimentbohrkernen in das LSG zur Rekonstruktion der Ozeanzirkulation während des letzten glazialen Maximums, Ph.D. thesis,, 149 pp.,Fachbereich Geowissenschaften, Univ. Hamburg,Hamburg, Germany,1997.
  • Winguth, A. M. E., E. Maier-Reimer, U. Mikolajewicz, J.-C. Duplessy, On the sensitivity of an ocean general circulation model to glacial boundary conditionsRep. 203, 48Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1996.
  • Woodruff, S. D., R. J. Slutz, R. L. Jenne, P. M. Steuer, A comprehensive ocean-atmosphere data set, Bull. Am. Meteorol. Soc., 68, 12391250, 1987.