The Fast Auroral SnapshoT (FAST) Mission

Authors


Abstract

The FAST satellite mission investigates plasma processes occurring in the low altitude auroral acceleration region, where magnetic field-aligned currents couple global magnetospheric current systems to the high latitude ionosphere. In the transition region between the hot tenuous magnetospheric plasma and the cold, dense ionosphere, these currents give rise to parallel electric fields, particle beams, plasma heating, and a host of wave-particle interactions. FAST instruments provide observations of plasma particles and fields in this region, with excellent temporal and spatial resolution combined with high quantitative accuracy. The spacecraft data system performs on-board evaluation of the measurements to select data “snapshots” that are stored for later transmission to the ground. New measurements from FAST show that upward and downward current regions in the auroral zone have complementary field and particle features defined by upward and downward directed parallel electric field structures and corresponding electron and ion beams. Direct measurements of wave particle interactions have led to several discoveries, including Debye-scale electric solitary waves associated with the acceleration of upgoing electron beams and ion heating, and the identification of electrons modulated by ion cyclotron waves as the source of flickering aurora. Detailed quantitative measurements of plasma density, plasma waves, and electron distributions associated with auroral kilometric radiation source regions yield a consistent explanation for AKR wave generation.

Ancillary