SEARCH

SEARCH BY CITATION

References

  • Ackerman, S., Remote sensing aerosols using satellite infrared observations, J. Geophys. Res., 102, 1706917079, 1997.
  • Aronson, J. R., A. G. Emslie, E. V. Miseo, E. M. Smith, P. F. Strong, Optical constants of monoclinic anisotropic crystals: Gypsum, Appl. Opt., 22, 40934098, 1983.
  • Bergstrom, R. W., Comments on the estimation of the absorption coefficients of atmospheric aerosols, Cont. Atmos. Phys., 46, 223231, 1973.
  • Bergstrom, R. W., S. Kinne, l. N. Sokolik, O. B. Toon, E. Mlawer, A. Clough, T. Ackerman, 3ARM: A fast, accurate radiative transfer model for use in climate studiesInternational Radiation SymposiumAm. Meteorol. Soc.Fairbanks, AlaskaAug. 19–24, 1996.
  • Carlson, T. N., S. Benjamin, Radiative heating rates for Sahara dust, J. Atmos. Sci., 37, 193213, 1980.
  • D'Almeida, G. A., On the variability of desert aerosol radiative characteristics, J. Geophys. Res., 92, 30173026, 1987.
  • D'Almeida, G. A., P. Koepke, E. P. Shettle, Atmospheric Aerosols: Global Climatology and Radiative Characteristics, 561, A. Deepak, Hampton, Va., 1991.
  • Denterner, F., G. Carmichael, Y. Zhang, P. Grutsen, J. Lelifeld, The role of mineral aerosols as a reactive surface in the global troposphere, J. Geophys. Res., 101, 2286922890, 1996.
  • Duce, R. A., Sources, Distributions, and fluxes of mineral aerosols and their relationship to climate, Aerosol Forcing of ClimateR. J. Charlson, J. Heintzenberg, 4372, John Wiley, New York, 1994.
  • Fisher, K., The optical constants of atmospheric aerosol particles in the 7.5 — 12 μm spectral region, Tellus, XXVIII, 266274, 1976.
  • Fouquart, Y., B. Bonnel, G. Brogniez, J. C. Buriezl, L. Smith, J. J. Mocrette, A. Cerf, Observations of Saharan aerosols: Results of ECLATS field experiment, II, Broadband radiative characteristics of the aerosols and vertical radiative flux divergence, J. Clim. and Appl. Meteorol., 26, 3852, 1987.
  • Gillette, D. A., Environmental factors affecting dust emission by wind erosion, Sahara DustC. Morales, 7194, John Wiley, New York, 1979.
  • Glassum, R. A., J. M. Prospero, Saharan aerosols over the tropical North Atlantic: Mineralogy, Mar. Geol., 37, 295321, 1980.
  • Gomes, L., D. A. Gillette, A comparison of characteristics of aerosol from dust storms in central Asia with soil-derived dust from other regions, Atmos. Environ., 27A, 25392544, 1993.
  • Levin, Z., J. D. Lindberg, Size distribution, chemical composition and optical properties of urban and desert aerosols in Israel, J. Geophys. Res., 84, 69416950, 1979.
  • Long, L. L., M. R. Querry, R. J. Bell, R. W. Alexander, Optical properties of calcite and gypsum in crystalline and powdered form in the infrared and far-infrared, IR Phys., 34, 191201, 1993.
  • Longtin, E. R., E. P. Shettle, J. R. Hummel, J. D. Pryce, A wind dependent desert aerosol model: Radiative propertiesAFGL- TR - 88 - 0112, 105Air Force Geophys. Lab., Air Force Syst. Command, Hanscom Air Force Base, Mass., 1988.
  • Marticorena, B., G. Bergametti, Modeling the atmospheric dust cycle, 1, Design of a soil-derived dust emission scheme, J. Geophys. Res., 100, 1641516430, 1995.
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, S. A. Clough, Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave, J. Geophys. Res., 102, 1666316682, 1997.
  • Parungo, F., et al., Asian dust storms and their effects on radiation and climate, part 1Rep. TR 2906Sci. and Technol. Corp., Hampton, Va., 1995.
  • Patterson, E. M., Optical properties of the crustal aerosol: Relation to chemical and physical characteristics, J. Geophys. Res., 86, 32363246, 1981.
  • Patterson, E. M., D. A. Gillette, Commonalities in measured size distributions for aerosols having a soil-derived component, J. Geophys. Res., 82, 20742082, 1977.
  • Peterson, J. T., J. A. Weinman, Optical properties of quartz dust particles at infrared wavelengths, J. Geophys. Res., 74, 69476952, 1969.
  • Popova, S. I., T. S. Tolstykh, V. T. Vorobev, Optical characteristics of amorphous quartz in the 1400–200 cm-1 region, Opt. Spectrosc., 33, 444445, 1972.
  • Popova, S. I., T. S. Tolstykh, L. S. Ivlev, Optical constants of Fe2O3 in the infrared range of the spectrum, Opt. Spectrosc., 35, 551552, 1973.
  • Pye, K., Aeolian Dust and Dust Deposits, 334, Academic, San Diego, Calif., 1987.
  • Querry, M. R., Optical constants of minerals and other materials from the millimeter to the UVRep. CRDEC-CR-88009U.S. Army, Aberdeen, MD, 1987.
  • Querry, M. R., G. Osborne, K. Lies, R. Jordon, R. Coveney, Complex refractive index of limestone in the visible and infrared, Appl. Opt., 17, 353356, 1978.
  • Quijano, A. L., I. N. Sokolik, O. B. Toon, Modeling radiative heating rates due to airborne mineral aerosols, EOS Trans. AGU, Fall Meet., Suppl., F109, 1997.
  • Roush, T., J. Pollack, J. Orenberg, Derivation of midinfrared (5–25 μm) optical constants of some silicates and palagonite, Icarus, 94, 191208, 1991.
  • Salisbury, J. W., L. S. Water, N. Vergo, D. M. Dana, Infrared (2.1–25 μm) Spectra of Minerals, 267, Johns Hopkins Univ. Press, Baltimore, Md., 1992.
  • Sokolik, I. N., G. Golitsyn, Investigation of optical and radiative properties of atmospheric dust aerosols, Atmos. Environ., 27A, 25092517, 1993.
  • Sokolik, I. N., O. B. Toon, Direct radiative forcing by anthropogenic mineral aerosols, Nature, 381, 681683, 1996a.
  • Sokolik, I. N., O. B. Toon, Direct radiative forcing by airborne mineral dust, J. Aerosol Sci., 27Suppl. 1, S11, 1996b.
  • Sokolik, I. N., A. V. Andronova, T. C. Johnson, Complex refractive index of atmospheric dust aerosols, Atmos. Environ., 27A, 24952502, 1993.
  • Sokolik, I. N., R. W. Bergstrom, O. B. Toon, Modeling of optical and radiative characteristics of the airborne mineral aerosol in infrared regionNinth Conference on Atmospheric RadiationAm. Meteorol. Soc.Long Beach, Calif.Feb. 2–7, 1997.
  • Steyer, T. R., L. Day, D. R. Huffman, Infrared absorption by small amorphous quartz sphere, Appl. Opt., 13, 15861590, 1974.
  • Tegen, I., I. Fung, Modeling of mineral dust in the atmosphere: Sources, transport, and optical thickness, J. Geophys. Res., 99, 2289722914, 1994.
  • Tegen, I., A. A. Lacis, I. Fung, The influence on climate forcing of mineral aerosols from disturbed soils, Nature, 380, 419422, 1996.
  • Toon, O. B., J. B. Pollack, C. Sagan, Physical properties of the particles composing the Martian dust storm of 1971–1972, Icarus, 30, 663696, 1977.
  • Volz, F. E., Infrared absorption by atmospheric aerosol substances, Appl. Opt., 11, 755759, 1972.
  • Volz, F. E., Infrared optical constant of ammonium sulfate, Sahara dust, volcanic pumice, and flash, Appl. Opt., 12, 564658, 1973.
  • , WCP-55, WMO Report of the Experts Meeting on Aerosols and Their Climatic EffectsWorld Meteorol. Organ., 1983.
  • Webb, R., C. Rosenzweig, E. H. Levine, A global data set of particle size properties, NASA Tech. Rep.NASA TM-4286, 33, 1991.