SEARCH

SEARCH BY CITATION

References

  • Armstrong, W., The use of polarography in the assay of oxygen diffusing from roots in anaerobic media, Phys. Plant., 20, 540553, 1967.
  • Armstrong, W., A re-examination of the functional significance of aerenchyma, Phys. Plant., 27, 173177, 1972.
  • Bianchi, T. S., M. E. Freer, R. G. Wetzel, Temporal and spatial variability, and the role of dissolved organic carbon (DOC) in methane fluxes from the Sabine River Floodplain (Southeast Texas, U.S.A.), Arch. Hydrobiol., 136, 261287, 1996.
  • Bubier, J. L., T. R. Moore, L. Bellisario, N. T. Comer, P. M. Crill, Ecological controls on methane emissions from a northern peatland complex in the zone of discontinuous permafrost, Manitoba, Canada, Global Biogeochem. Cycles, 9, 455470, 1995.
  • Cao, M., J. B. Dent, O. W. Heal, Modeling methane emissions from rice paddies, Global Biogeochem. Cycles, 9, 183195, 1995.
  • Cao, M., S. Marshall, K. Gregson, Global carbon exchange and methane emissions from natural wetlands: Application of a process-based model, J. Geophys. Res., 101, 1439914414, 1996.
  • Chanton, J. P., C. S. Martens, C. A. Kelley, P. M. Crill, W. J. Showers, Methane transport mechanisms and isotopic fractionation in emergent macrophytes of an Alaskan tundra lake, J. Geophys. Res., 97, 1668116688, 1992.
  • Chanton, J. P., G. J. Whiting, J. D. Happell, G. Gerard, Contrasting rates and diurnal patterns of methane emission from emergent aquatic macrophytes, Aquat. Bot., 46, 111128, 1993.
  • Conrad, R., Mechanisms controlling methane emission from wetland rice fields, Biogeochemistry of Global ChangeR. S. Oremland, 317335, Chapman & Hall, New York, 1993.
  • Dacey, J. W. H., M. J. Klug, Methane efflux from lake sediments through water lilies, Science, 203, 12531255, 1979.
  • Dlugokencky, E. J., L. P. Steele, P. M. Lang, K. A. Masarie, Atmospheric methane at Mauna Loa and Barrow observatories: Presentation and analysis of in situ measurements, J. Geophys. Res., 100, 2310323113, 1995.
  • Fechner, E. J., H. F. Hemond, Methane transport and oxidation in the unsaturated zone of a Sphagnum peatland, Global Biogeochem. Cycles, 6, 3344, 1992.
  • Gerard, G., J. Chanton, Quantification of methane oxidation in the rhizosphere of emergent aquatic macrophytes: Defining upper limits, Biogeochemistry, 23, 7997, 1993.
  • Happell, J. D., J. P. Chanton, G. J. Whiting, W. J. Showers, Stable isotopes as tracers of methane dynamics in Everglades marshes with and without active populations of methane oxidizing bacteria, J. Geophys. Res., 98, 1477114782, 1993.
  • Hesslein, R. H., An in situ sampler for close interval pore water studies, Limnol. Oceanogr., 21, 912914, 1976.
  • , Intergovernmental Panel on Climate Change (IPCC), Climate Change 1992: The supplemental report to the IPCC scientific assessment, Cambridge Univ. Press, New York, 1992.
  • Kelker, D., J. Chanton, The effect of clipping on methane emissions from Carex, Biogeochemistry, 39, 3744, 1997.
  • King, G. M., P. Roslev, H. Skovgaard, Distribution and rate of methane oxidation in sediments of the Florida Everglades, Appl. and Environ. Microbiol., 56, 29022911, 1990.
  • Knapp, A. K., J. B. Yavitt, Evaluation of a closed-chamber method for estimating methane emissions from aquatic plants, Tellus, Ser. B, 44, 6371, 1992.
  • Mikkela, C., I. Sundh, B. H. Svensson, M. Nilsson, Diurnal variation in methane emission in relation to the water table, soil temperature, climate and vegetation cover in a Swedish acid mire, Biogeochemistry, 28, 93114, 1995.
  • Mitchell, J. F. B., The “greenhouse” effect and climate change, Rev. of Geophys., 27, 115140, 1989.
  • Miura, Y., A. Watanabe, M. Kimura, S. Kuwatsuka, Methane emission from paddy field, 2, Main route of methane transfer through rice plant, and temperature and light effects on diurnal variation of methane emission, Environ. Sci., 5, 187193, 1992.
  • Morrissey, L. A., D. B. Zobel, G. P. Livingston, Significance of stomatal control on methane release from Carex-dominated wetlands, Chemosphere, 26, 14339, 1993.
  • Nouchi, I., T. Hosono, K. Aoki, K. Minami, Seasonal variation in methane flux from rice paddies associated with methane concentration in soil water, rice biomass and temperature, and its modelling, Plant Soil, 161, 195208, 1994.
  • O'Brien, W. J., Preface to Toolik Lake-Ecology of an aquatic ecosystem in arctic Alaska, Hydrobiologica, 240, vii, 1992.
  • Reeburgh, W. S., S. C. Whalen, High-latitude ecosystems as CH4 sources, Ecol. Bull., 42, 6270, 1992.
  • Reeburgh, W. S., S. C. Whalen, M. J. Alperin, The role of methylotrophy in the global methane budget, Microbial Growth on C-1 CompoundsJ. C. Murrell, D. P. Kelley, 114, Intercept, Ltd., Andover, England, 1993.
  • Roulet, N., et al., High-latitude ecosystems: Sources and sinks of trace gases, Ecol. Bull., 42, 8697, 1992.
  • Saarnio, S., J. Aim, J. Silvola, A. Lohila, H. Nykänen, P. J. Martikainen, Seasonal variation in CH4 emissions and production and oxidation potentials at microsites on an oligotrophic pine fen, Oecologia (Berlin), 110, 414422, 1997.
  • Schimel, J. P., Plant transport and methane production as controls on methane flux from arctic wet meadow tundra, Biogeochemistry, 28, 183200, 1995.
  • Schutz, H., P. Schroeder, H. Rennenberg, Role of plants in regulating the methane flux to the atmosphere, Trace Gas Emissions by PlantsT. Sharkey, E. A. Holland, H. A. Mooney, 2963, Academic, San Diego, Calif., 1991.
  • Sebacher, D. I., R. C. Harriss, K. B. Bartlett, S. M. Sebacher, S. S. Grice, Atmospheric methane sources: Alaskan tundra bogs, an alpine fen, and a subarctic boreal marsh, Tellus, Ser. B, 38, 110, 1986.
  • Sebacher, D. J., R. C. Harriss, K. B. Bartlett, Methane emissions to the atmosphere through aquatic plants, J. Environ. Qual., 14, 3946, 1985.
  • Shannon, R. D., J. R. White, J. E. Lawson, B. S. Gilmour, Methane efflux from emergent vegetation in peatlands, J. Ecol., 84, 239246, 1996.
  • Sharkey, T. D., Stomatal control of trace gas emissions, Trace Gas Emissions by PlantsT. D. Sharkey, E. A. Holland, H. A. Mooney, 335339, Academic, San Diego, Calif., 1991.
  • Silvola, J., J. Alm, U. Ahlholm, H. Nykänen, P. J. Martikainen, The contribution of plant roots to CO2 fluxes from organic soils, Biol. Fertility Soils, 23, 126131, 1996.
  • Thomas, K. L., J. Benstead, K. L. Davies, F. Lloyd, Role of wetland plants in the diurnal control of CH4 and CO2 fluxes in peat, Soil Biol. Biochem., 28, 1723, 1996.
  • Torn, M. S., F. S. Chapin III, Environmental and biotic controls over methane flux from arctic tundra, Chemosphere, 26, 357368, 1993.
  • Vecherskaya, M. S., V. F. Galchenko, E. N. Sokolova, V. A. Samarkin, Activity and species composition of aerobic methanotrophic communities in tundra soils, Current Microbiol., 27, 181184, 1993.
  • Verville, J., S. Hobbie, D. Hooper, F. S. Chapin III, Response of tundra CH4 and CO2 flux to manipulation of temperature and vegetation, Biogeochemistry, 1998.
  • Waddington, J. M., N. T. Roulet, R. V. Swanson, Water table control of CH4 emission enhancement by vascular plants in boreal peatlands, J. Geophys. Res., 101, 2277522785, 1996.
  • Walter, B. P., M. Heimann, R. D. Shannon, J. R. White, A process-based model to derive methane emissions from natural wetlandsTech. Rep. 215, 15Max-Planck-Inst. für Meteorol., Hamburg, Germany, 1996.
  • Whalen, S. C., W. S. Reeburgh, A methane flux time series for tundra environments, Global Biogeochem. Cycles, 2, 399409, 1988.
  • Whiting, G. J., J. P. Chanton, Plant-dependent CH4 emission in a subarctic Canadian fen, Global Biogeochem. Cycles, 6, 225231, 1992.
  • Whiting, G. J., D. S. Bartlett, S. M. Fan, P. S. Bakwin, S. C. Wofsy, Biosphere/atmosphere CO2 exchange in tundra ecosystems: Community characteristics and relationships with multispectral surface reflectance, J. Geophys. Res., 97, 1667116680, 1992.
  • Yamamoto, S., J. B. Alcauskas, T. E. Crozier, Solubility of methane in distilled water and seawater, J. Chem. Eng. Data, 21, 7880, 1976.
  • Yavitt, J. B., A. K. Knapp, Methane emission to the atmosphere through emergent cattail (Typha latifolia L.) plants, Tellus, Ser. B, 47, 521, 1995.