SEARCH

SEARCH BY CITATION

References

  • Baross, J. A., J. W. Deming, Growth at high temperatures: Isolation and taxonomy, physiology, ecology, The Microbiology of Deep-Sea Hydrothermal Vent EnvironmentsD. M. Karl, 169217, Telford Press, Caldwell, N.J., 1995.
  • Baross, J. A., S. E. Hoffman, Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life, Orig. Life Evol. Biosphere, 15, 327345, 1985.
  • Berndt, M. E., D. E. Allen, W. E. Seyfried Jr., Reduction of CO2 during serpentinization of olivine at 300°C and 500 bars, Geology, 24, 351354, 1996.
  • Bowers, T. S., K. L. Von Damm, J. Edmond, Chemical evolution of mid-ocean ridge hot springs, Geochim. Cosmochim. Acta, 49, 22392252, 1985.
  • Bowie, D., Life of Mars? From: Hunky DoryRep. RCA LSP4623Radio Corp. of Am., New York, 1971.
  • Cameron, E. M., Sulfate and sulfate reduction in early Precambrian oceans, Nature, 296, 145148, 1982.
  • Carr, M. H., Mars: A water-rich planet?, Icarus, 68, 187216, 1986.
  • Carr, M. H., D/H on Mars: Effects of floods, volcanism, impacts, and polar processes, Icarus, 87, 210227, 1990.
  • Carr, M. H., Water on Mars, Oxford Univ. Press, New York, 1996.
  • Clifford, S. M., A model for the hydrologic and climatic behavior of water on Mars, J. Geophys. Res., 98E6, 10,97311,016, 1993.
  • Corliss, J. B., J. A. Baross, S. E. Hoffman, An hypothesis concerning the relationship between submarine hot springs and the origin of life on Earth, Oceanol. Acta, SP, 5969, 1981.
  • French, B. M., Stability of siderite, FeCO3, and progressive metamorphism of iron formation, Ph.D. thesis,Johns Hopkins Univ.,Baltimore, Md.,1964.
  • Griffith, L. L., E. L. Shock, A geochemical model for the formation of hydrothermal carbonate on Mars, Nature, 377, 406408, 1995.
  • Griffith, L. L., E. L. Shock, Hydrothermal hydration of Martian crust: Illustration via geochemical model calculations, J. Geophys. Res., 102, 91359143, 1997.
  • Grotzinger, J. P., J. F. Kasting, New constraints on Precambrian ocean composition, J. Geol., 101, 235243, 1993.
  • Haymon, R. M., M. Kastner, Hot spring deposits on the East Pacific Rise at 21°N: Preliminary description of mineralogy and genesis, Earth Planet. Sci. Lett., 53, 363381, 1981.
  • Helgeson, H. C., Thermodynamics of hydrothermal systems at elevated temperatures and pressures, Am. J. Sci., 267, 729804, 1969.
  • Helgeson, H. C., J. M. Delaney, H. W. Nesbitt, D. K. Bird, Summary and critique of the thermodynamic properties of rockforming minerals, Am. J. Sci., 278-A, 1229, 1978.
  • Helgeson, H. C., D. H. Kirkham, G. C. Flowers, Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures, IV, Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 5 kb and 600°C, Am. J. Sci., 281, 12491516, 1981.
  • Helgeson, H. C., A. M. Knox, C. E. Owens, E. L. Shock, Petoleum, oil field waters and authigenic mineral assemblages: Are they in metastable equilibrium in hydrocarbon reservoirs?, Geochim. Cosmochim. Acta, 57, 32953339, 1993.
  • Holland, H. D., The geologic history of seawater—An attempt to solve the problem, Geochim. Cosmochim. Acta, 36, 637651, 1972.
  • Ingmanson, D. E., M. J. Dowler, Chemical evolution and the evolution of the Earth's crust, Orig. Life Evol. Biosphere, 8, 221224, 1977.
  • Jakosky, B. M., J. H. Jones, Evolution of water on Mars, Nature, 370, 328329, 1994.
  • Janecky, D. R., W. E. Seyfried Jr., Formation of massive sulfide deposits on oceanic ridge crests: Incremental reaction models for mixing between hydrothermal solutions and seawater, Geochim. Cosmochim. Acta, 48, 27232738, 1984.
  • Jannasch, H. W., M. J. Mottl, Geomicrobiology of deep-sea hydrothermal vents, Science, 229, 717725, 1985.
  • Johnson, J. W., E. H. Oelkers, H. C. Helgeson, SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0° to 1000°C, Comput. Geosci., 187, 899947, 1992.
  • Jull, A. J. T., et al., Isotopic composition of carbonates in the SNC meteorites Allan Hills 84001 and Nakhla, Meteoritics, 30, 311318, 1995.
  • Karl, D. M., Ecology of free-living, hydrothermal vent microbial communities, The Microbiology of Deep-Sea Hydrothermal VentsD. M. Karl, 35124, Telford Press, Caldwell, N.J., 1995.
  • Karlsson, H. R., R. N. Clayton, E. K. Gibson Jr., T. K. Mayeda, Water in SNC meteorites: Evidence for a Martian hydrosphere, Science, 255, 14091411, 1992.
  • Kempe, S., E. T. Degens, An early soda ocean?, Chem. Geol., 53, 95108, 1985.
  • MacLeod, G., C. McKeown, A. J. Hall, M. J. Russell, Hydrothermal and oceanic pH conditions of possible relevance to the origin of life, Orig. Life Evol. Biosphere, 23, 1941, 1994.
  • McCollom, T. M., E. L. Shock, Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems, Geochim. Cosmochim. Acta, 61, 43754391, 1997.
  • McCollom, T. M., E. L. Shock, Fluid-rock interactions in the lower oceanic crust: Thermodynamic models of hydrothermal alteration, J. Geophys. Res., 103, 547575, 1998.
  • McKay, C. P., W. L. Davis, Duration of liquid water habitats on early Mars, Icarus, 90, 214221, 1991.
  • McKay, D. S., E. K. Gibson, K. L. Thomas-Keprta, H. Vali, C. S. Romanek, S. J. Clemett, X. D. F. Chillier, C. R. Maechling, R. N. Zare, Search for past life on Mars: Possible relic biogenic activity in Martian meteorite ALH84001, Science, 273, 924930, 1996.
  • Mittlefehldt, D. W., ALH84001: A cumulate orthopyroxenite member of the Martian meteorite class, Metoritics, 29, 214221, 1994.
  • Pace, N. R., Origins of life—Facing up to the physical settings, Cell, 65, 531533, 1991.
  • Pace, N. R., A molecular view of microbial diversity and the biosphere, Science, 276, 734740, 1997.
  • Romanek, C. S., et al., Record of fluid-rock interactions on Mars from the meteorite ALH84001, Nature, 372, 655657, 1994.
  • Rona, P. A., L. Widenfalk, K. Boström, Serpentinized ultramafics and hydrothermal activity at the Mid-Atlantic Ridge crest near 15°N, J. Geophys. Res., 92, 14171427, 1987.
  • Russell, M. J., A. J. Hall, The emergence of life at hot springs: A basis for understanding the relationships between organics and mineral deposits, Proceedings of the Third Biennial SGA Meeting, Prague, Mineral Deposits: From Their Origin to Their Environmental ImpactsJ. Pasava, B. Kribek, K. Zak, 793, A. A. Balkema, Brookfield, Vt., 1995.
  • Russell, M. J., A. J. Hall, The emergence of life from iron monosulphide bubbles at a hydrothermal redox front, J. Geol. Soc., 154, 377402, 1997.
  • Russell, M. J., A. J. Hall, A. G. Cairns-Smith, P. S. Braterman, Submarine hot springs and the origin of life, Nature, 336, 117, 1988.
  • Russell, M. J., A. J. Hall, D. Turner, In vitro growth of iron sulphide chimneys: Possible culture chambers for origin-of-life experiments, Terra Nova, 1, 238241, 1989.
  • Russell, M. J., R. M. Daniel, A. J. Hall, On the emergence of life via catalytic iron sulphide membranes, Terra Nova, 5, 343347, 1993.
  • Russell, M. J., R. M. Daniel, A. J. Hall, J. A. Sherringham, A hydrothermally precipitated catalytic iron sulphide membrane as a first step towards life, J. Mol. Evol., 39, 231243, 1994.
  • Schulte, M. D., E. L. Shock, Aldehydes in hydrothermal solution: Standard partial molal thermodynamic properties and relative stabilities at high temperatures and pressures, Geochim. Cosmochim. Acta, 57, 3835, 1993.
  • Seewald, J. S., Evidence for metastable equilibrium between hydrocarbons under hydrothermal conditions, Nature, 370, 285287, 1994.
  • Shock, E. L., Organic acid metastability in sedimentary basins, Geology, 16, 886890, 1988.
  • Shock, E. L., Corrections to “Organic acid metastability in sedimentary basins”, Geology, 17, 572573, 1989.
  • Shock, E. L., Geochemical constraints on the origin of organic compounds in hydrothermal systems, Origins Life Evol. Biosphere, 20, 331367, 1990.
  • Shock, E. L., Chemical environments in submarine hydrothermal systems,67107,Orig. Life Evol. Biosphere,22,67–107,1992.
  • Shock, E. L., Application of thermodynamic calculations to geochemical processes involving organic acids, The Role of Organic Acids in Geological ProcessesM. Lewan, E. Pittman, 270318, Springer-Verlag, New York, 1994.
  • Shock, E. L., Organic acids in hydrothermal solutions: Standard molal thermodynamic properties of carboxylic acids, and estimates of dissociation constants at high temperatures and pressures, Am. J. Sci., 295, 496580, 1995.
  • Shock, E. L., Hydrothermal systems as environments for the emergence of life, Evolution of Hydrothermal Ecosystems on Earth (and Mars?), Ciba Found. Symp., 202 4060, 1996.
  • Shock, E. L., High-temperature life without photosynthesis as a model for Mars, J. Geophys. Res., 102, 23,68723,694, 1997.
  • Shock, E. L., H. C. Helgeson, Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000°C, Geochim. Cosmochim. Acta, 52, 20092036, 1988.
  • Shock, E. L., H. C. Helgeson, Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Standard partial molal properties of organic species, Geochim. Cosmochim. Acta, 54, 915945, 1990.
  • Shock, E. L., C. M. Koretsky, Metal-organic complexes in geochemical processes: Calculation of standard partial molal thermodynamic properties of aqueous acetate complexes at high pressures and temperatures, Geochim. Cosmochim. Acta, 57, 48994922, 1993.
  • Shock, E. L., C. M. Koretsky, Metal-organic complexes in geochemical processes: Estimation of standard partial molal thermodynamic properties of aqueous complexes between metal cations and monovalent organic acid ligands at high pressures and temperatures, Geochim. Cosmochim. Acta, 59, 14971532, 1995.
  • Shock, E. L., W. B. McKinnon, Hydrothermal processing of cometary volatiles—Application to Triton, Icarus, 106, 464477, 1993.
  • Shock, E. L., H. C. Helgeson, D. A. Sverjensky, Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Standard partial molal properties of inorganic neutral species, Geochim. Cosmochim. Acta, 53, 21572183, 1989.
  • Shock, E. L., E. H. Oelkers, J. W. Johnson, D. A. Sverjensky, H. C. Helgeson, Calculation of the thermodynamic properties of aqueous species at high pressures and temperatures: Effective electrostatic radii, dissociation constants, and standard partial molal properties to 1000°C and 5 kb, J. Chem. Soc. Faraday Trans., 88, 803826, 1992.
  • Shock, E. L., T. McCollom, M. D. Schulte, Geochemical constraints on chemolithoautotrophic reactions in hydrothermal systems, Origins Life Evol. Biosphere, 25, 141159, 1995.
  • Shock, E. L., D. C. Sassani, M. Willis, D. A. Sverjensky, Inorganic species in geologic fluids: Correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes, Geochim. Cosmochim. Acta, 61, 907950, 1997.
  • Silvestri, G., S. Gambino, G. Filardo, Electrochemical synthesis involving carbon dioxide, Enzymatic and Model Carboxylation and Reduction Reactions for Carbon Dioxide UtilizationM. Aresta, J. V. Schloss, 101, Kluwer Acad., Norwell, Mass., 1990.
  • Squyres, S. W., J. F. Kasting, Early Mars: How warm and how wet?, Science, 265, 744749, 1994.
  • Stein, C. A., S. Stein, Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow, J. Geophys. Res., 99, 30813096, 1994.
  • Stetter, K. O., Microbial life in hyperthermal environments, Am. Soc. Microbiol. News, 61, 285290, 1995.
  • Stetter, K. O., G. Fiala, G. Huber, R. Huber, A. Segerer, Hyperthermophilic microorganisms, EMS Microbiol. Rev., 75, 117124, 1990.
  • Sullivan, B. P., M. R. M. Bruce, T. R. O'Toole, C. M. Bolinger, E. Megehee, H. Thorp, T. J. Meyer, Electrocatalytic carbon dioxide reduction, Catalytic Activation of Carbon DioxideW. M. Ayers, 52, Am. Chem. Soc., Washington, D.C., 1988.
  • Sverjensky, D. A., E. L. Shock, H. C. Helgeson, Prediction of the thermodynamic properties of aqueous metal complexes to 1000°C and 5 kb, Geochim. Cosmochim. Acta, 61, 13591412, 1997.
  • Tivey, M. K., Modeling chimney growth and associated fluid flow at seafloor hydrothermal vent sites, Seafloor Hydrothermal Systems: Physical, Chemical, Biological and Geological Interactions, Geophys. Monogr. Ser., 91S. E. Humphris, et al., 158177, AGU, Washington, D.C., 1995.
  • Treiman, A. H., A petrographic history of martian meteorite ALH84001: Two shocks and an ancient age, Meteoritics, 30, 294302, 1995.
  • Von Damm, K. L., Seafloor hydrothermal activity: Black smoker chemistry and chimneys, Annu. Rev. Earth Planet. Sci., 18, 173204, 1990.
  • Von Damm, K. L., et al., Chemistry of submarine hydrothermal solutions at 21°N, East Pacific Rise, Geochim. Cosmochim. Acta, 49, 21972220, 1985.
  • Walker, J. C. G., Possible limits on the composition of the Archean ocean, Nature, 302, 518520, 1983.
  • Walker, J. C. G., P. Brimblecombe, Iron and sulfur in the prebiologic ocean, Precambrian Res., 28, 205222, 1985.
  • Walter, M. R., D. J. DesMarais, Preservation of biological information in thermal spring deposits: Developing a strategy for the search for fossil life on Mars, Icarus, 101, 129143, 1993.
  • Watson, L. L., et al., Water on mars: Clues from deuterium/hydrogen and water contents of hydrous phases in SNC meteorites, Science, 265, 8690, 1994.
  • Welhan, J. A., H. Craig, Methane, hydrogen, and helium in hydrothermal fluids at 21°N on the East Pacific Rise, Hydrothermal Processes at Seafloor Spreading CentersP. A. Rona, et al., 391, Plenum, New York, 1983.
  • Woese, C. R., Bacterial evolution, Microbiol. Rev., 51, 221271, 1987.
  • Woese, C. R., O. Kandler, M. L. Wheelis, Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya, Proc. Natl. Acad. Sci. U.S.A., 87, 45764579, 1990.
  • Wolery, T. J., EQ3NR: A computer program for geochemical aqueous speciation-solubility calculations: Theoretical manual, user's guide, and related documentation (version 7.0)Rep. UCRL-MA-110662-PT-IIILawrence Livermore Natl. Lab., Livermore, Calif., 1992.
  • Wolery, T. J., S. A. Daveler, EQ6: A computer program for reaction path modeling of aqueous geochemical systems: Theoretical manual, user's guide, and related documentation, (version 7.0)Rep. UCRL-MA-110662-PT-IVLawrence Livermore Natl. Lab., Livermore, Calif., 1992.