Reevaluation of the oxygen isotopic composition of planktonic foraminifera: Experimental results and revised paleotemperature equations


  • Bryan E. Bemis,

  • Howard J. Spero,

  • Jelle Bijma,

  • David W. Lea


Cultured planktonic foraminifera, Orbulina universa (symbiotic) and Globigerina bulloides (nonsymbiotic), are used to reexamine temperature:δ18O relationships at 15°–25°C. Relationships for both species can be described by linear equations. Equations for O. universa grown under low light (LL) and high light (HL) share a slope of −4.80 (0.21‰ °C−1) with a HL-LL offset of −0.33‰ due to symbiont photosynthetic activity. The effect of [CO32−] on O. universa is −0.002‰ µmol−1 kg−1 and is insensitive to temperature. For G. bulloides, ontogenetic effects produce size-related trends in temperature:δ18O, whereby larger shells are enriched in 18O relative to smaller specimens. The O. universa temperature:δ18O relationships are more accurate than previously published equations for describing plankton tow data. Our equations do not explain planktonic core top data with the same precision but provide a good fit to benthic Cibicidoides data below 10°C. Temperature:δ18O relationships for G. bulloides provide good agreement with field data for this species from the northeast Pacific.