SEARCH

SEARCH BY CITATION

References

  • Ahmed, S., G. deMarsily, Cokriged estimation of aquifer transmissivity as an indirect solution of the inverse problem: A practical approach, Water Resour. Res., 29(2), 521530, 1993.
  • Beaubeim, R. L., Identification of spatial variability and heterogeneity of the Culebra Dolomite at the Waste Isolation Pilot Plant site, Proceedings: NEA Workshop on Heterogeneity of Groundwater Flow and Site Evaluation, Paris, France, 22–24 October 1990, 131142Nucl. Energy Agency, Org. for Econ. Coop. Dev., Paris, 1991.
  • Capilla, J. E., J. J. Gómez-Hernández, A. Sahuquillo, Stochastic simulation of transmissivity fields conditional to both transmissivity and piezometric data, 2, Demonstration on a synthetic aquifer, J. Hydrol., 203, 175188, 1997.
  • Carrera, J., State of the art of the inverse problem applied to the flow and solute transport equations, Groundwater Flow and Quality Modelling, NATO ASI Ser., 224 549585, Kluwer, Norwell, Mass., 1988.
  • Carrera, J., L. Glorioso, On geostatistical formulations of the groundwater flow inverse problem, Adv. Water Resour., 14(5), 273283, 1991.
  • Carrera, J., A. Medina, An improved form of adjoint-state equations for transient problems, Computational Methods in Water Resources X, 199206, Kluwer, Norwell, Mass., 1994.
  • Carrera, J., S. P. Neuman, Estimation of aquifer parameters under transient and steady state conditions, 1, Maximum likelihood method incorporating prior information, Water Resour. Res., 22(2), 199210, 1986a.
  • Carrera, J., S. P. Neuman, Estimation of aquifer parameters under transient and steady state conditions, 2, Uniqueness, stability, and solution algorithms, Water Resour. Res., 22(2), 211227, 1986b.
  • Carrera, J., A. Medina, G. Galarza, Groundwater inverse problem: Discussion on geostatistical formulations and validation, Hydrogéologie, 4, 313324, 1993.
  • Cauffman, T. L., A. M. LaVenue, andJ. P. McCord, Ground-water flow modeling of the Culebra Dolomite, vol.II,Data base, SAND89-7068/2,Sandia Natl. Lab., Albuquerque, N. M., 1990.
  • Clifton, P. M., S. P. Neuman, Effects of kriging and inverse modeling on conditional simulation of the Avra Valley aquifer in southern Arizona, Water Resour. Res., 18(4), 12151234, 1982.
  • Cooley, R. L., A method of estimating parameters and assessing reliability for models of steady state groundwater flow, 1, Theory and numerical properties, Water Resour. Res., 13(2), 318324, 1977.
  • Cooley, R. L., A method of estimating parameters and assessing reliability for models of steady state groundwater flow, 2, Application of statistical analysis, Water Resour. Res., 15(3), 603617, 1979.
  • Cooley, R. L., Incorporation of prior information on parameters into nonlinear regression groundwater flow models, 1, Theory, Water Resour. Res., 18(4), 965976, 1982.
  • Cooley, R. L., Incorporation of prior information on parameters into nonlinear regression groundwater flow models, 2, Applications, Water Resour. Res., 19(3), 662676, 1983.
  • Copty, N., Y. Rubin, G. Mavko, Geophysical-hydrological identification of field permeabilities through Bayesian updating, Water Resour. Res., 29(8), 28132825, 1993.
  • Dagan, G., Stochastic modeling of groundwater flow by unconditional and conditional probabilities: The inverse problem, Water Resour. Res., 21(1), 6572, 1985.
  • Dagan, G., Flow and Transport in Porous Formations, 465, Springer-Verlag, New York, 1989.
  • Dagan, G., Y. Rubin, Stochastic identification of recharge, transmissivity and storativity in aquifer transient flow: A quasi-steady approach, Water Resour. Res., 24(10), 16981710, 1988.
  • Delhomme, J. P., Spatial variability and uncertainty in groundwater flow parameters: A geostatistical approach, Water Resour. Res., 15(2), 269280, 1979.
  • deMarsily, G., De l'identification des systèmes en hydrogeologiques (tome 1),Ph.D. thesis, pp. 58130,L'Univ. Pierre et Marie Curie-Paris VI, Paris, 1978.
  • deMarsily, G., G. Lavedan, M. Boucher, G. Fasanion, Interpretation of interference tests in a well field using geostatistical techniques to fit the permeability distribution in a reservoir model, Geostatistics for Natural Resources Characterization 2nd NATO Advanced Study Institute, South Lake Tahoe, CA, September 6–17, 1987, part 2, G. Verly, et al., 831849, D. Reidel, Norwell, Mass., 1984.
  • Desbarats, A. J., R. M. Srivastava, Geostatistical simulation of groundwater flow parameters in a simulated aquifer, Water Resour. Res., 27(5), 687698, 1991.
  • Dettinger, M. D., J. L. Wilson, First order analysis of uncertainty in numerical models of groundwater flow, 1, Mathematical development, Water Resour. Res., 17(1), 149161, 1981.
  • Deutsch, C. V., A. G. Journel, GSLIB: Geostatistical Software Library and User's Guide, Oxford Univ. Press, New York, 1992.
  • Dietrich, C. R., G. N. Newsam, Sufficient conditions for identifying transmissivity in a confined aquifer, Inverse Prob., 6(3), L21L28, 1990.
  • Ginn, T. R., J. H. Cushman, Inverse methods for subsurface flow: A critical review of stochastic techniques, Stochastic Hydrol. Hydraul., 4(1), 126, 1990.
  • Gómez-Hernández, J. J., A. G. Journel, Joint sequential simulation of multi-gaussian fields, Geostatistics Troia '92, 1A. Soares, 8594, Kluwer Acad., Norwell, Mass., 1993.
  • Gómez-Hernández, J. J., A. Sahuquillo, J. E. Capilla, Stochastic simulation of transmissivity fields conditional to both transmissivity and piezometric data, 1, Theory, J. Hydrol., 203, 162174, 1997.
  • Gonzalez, R. V., M. Giudici, G. Ponzini, G. Parravicini, The differential system method for the identification of transmissivity and storativity, Transp. Porous Media, 26, 339371, 1997.
  • Grindrod, P., M. D. Impey, Fractal field simulations of tracer migration within the WIPP Culebra DolomiteIntera Inf. Technol., Henley-upon-Thames, U. K.Dec., 1991.
  • Gutjahr, A. L., J. R. Wilson, Co-kriging for stochastic flow models, Transp. Porous Media, 4(6), 585598, 1989.
  • Gutjahr, A., B. Bullard, S. Hatch, L. Hughson, Joint conditional simulations and the spectral method approach for flow modeling, Stochastic Hydrol. Hydraul., 8(1), 79108, 1994.
  • Harvey, C. F., S. M. Gorelick, Mapping hydraulic conductivity: Sequential conditioning with measurements of solute arrival time, hydraulic head and local conductivity, Water Resour. Res., 31(7), 16151626, 1995.
  • Hoeksema, R. J., P. K. Kitanidis, An application of the geostatistical approach to the inverse problem in two-dimensional groundwater modeling, Water Resour. Res., 20(7), 10031020, 1984.
  • Hsu, K., D. Zhang, S. P. Neuman, Higher-order effects on flow and transport in randomly heterogeneous porous media, Water Resour. Res., 32(3), 571582, 1996.
  • Hyndman, D. W., J. M. Harris, S. M. Gorelick, Coupled seismic and tracer test inversion for aquifer property characterization, Water Resour. Res., 30(7), 19651977, 1994.
  • Johnson, R. A., D. W. Wichern, Applied Multivariate Statistical Analysis, 594, Prentice-Hall, Englewood Cliffs, N. J., 1982.
  • Journel, A. G., C. J. Huijbregts, Mining Geostatistics, Academic, San Diego, Calif., 1978.
  • Keidser, A., D. Rosbjerg, A comparison of four inverse approaches to groundwater flow and transport parameter identification, Water Resour. Res., 27(9), 22192232, 1991.
  • Kitanidis, P. K., R. W. Lane, Maximum likelihood parameter estimation of hydrologic spatial processes by the Gauss-Newton method, Hydrol., 79(1–2), 5371, 1985.
  • Kitanidis, P. K., E. G. Vomvoris, A geostatistical approach to the inverse problem in groundwater modeling (steady state) and one-dimensional simulations, Water Resour. Res., 19(3), 677690, 1983.
  • Koltermann, C. E., S. M. Gorelick, Heterogeneity in sedimentary deposits: A review of structur-imitating, process-imitating, and descriptive approaches, Water Resour. Res., 32(9), 26172658, 1996.
  • Kuiper, L. K., A comparison of several methods for the solution of the inverse problem in two-dimensional steady state groundwater flow modeling, Water Resour. Res., 22(5), 705714, 1986.
  • Lappin, A. R., Summary of site-characterization studies conducted from 1983 through 1987 at the Waste Isolation Pilot Plant (WIPP) site, southeastern New MexicoSAND88-0157Sandia Natl. Lab., Albuquerque, N. M., 1988.
  • LaVenue, A. M., J. F. Pickens, Application of a coupled adjoint-sensitivity and kriging approach to calibrate a groundwater flow model, Water Resour. Res., 28(6), 15431569, 1992.
  • LaVenue, A. M., B. S. RamaRao, G. deMarsily, M. G. Marietta, Pilot point methodology for automated calibration of an ensemble of conditionally simulated transmissivity fields, 2, Application, Water Resour. Res., 31(3), 495516, 1995.
  • Mackay, R., A study of the effect of the extent of site investigation on the estimation of radiological performance: OverviewDoE/HMIP/ RR/93.053, 28UK Dep. of the Environ., Her Majesty's Insp. of Pollut., London, 1993.
  • Mandelbrot, B. B., The Fractal Geometry of Nature, 468, W. H. Freeman, New York, 1983.
  • Mantoglou, A., J. L. Wilson, The turning bands method for simulation of random fields using line generation by a spectral method, Water Resour. Res., 18(5), 13791394, 1982.
  • Matheron, G., The intrinsic random functions and their applications, Adv. Appl. Prob., 5(3), 439468, 1973.
  • McKenna, S. A., E. P. Poeter, Field example of data fusion in site characterization, Water Resour. Res., 31(12), 32293240, 1995.
  • McLaughlin, D., L. R. Townley, A reassessment of the groundwater inverse problem, Water Resour. Res., 32(5), 11311161, 1996.
  • Neuman, S. P., S. Orr, Prediction of steady state flow in nonuniform geologic media by conditional moments: Exact nonlocal formalism, effective conductivities, and weak approximation, Water Resour. Res., 29(2), 341364, 1993.
  • Paleologos, E. K., S. P. Neuman, D. Tartakovsky, Effective hydraulic conductivity of bounded, strongly heterogeneous porous media, Water Resour. Res., 32(5), 13331341, 1996.
  • Peck, A., S. Gorelick, G. deMarsily, S. Foster, V. Kovalevsky, Consequences of spatial variability in aquifer properties and data limitations for groundwater modelling practice, IAHS Publ., 175, 272, 1988.
  • RamaRao, B. S., A. M. LaVenue, G. deMarsily, M. G. Marietta, Pilot point methodology for automated calibration of an ensemble of conditionally simulated transmissivity fields, 1, Theory and computational experiments, Water Resour. Res., 31(3), 475493, 1995.
  • Robin, M. J. L., A. L. Gutjahr, E. A. Sudicky, J. L. Wilson, Cross-correlated random field generation with the direct Fourier transform method, Water Resour. Res., 29(7), 23852397, 1993.
  • Roth, C., J. P. Chiles, C. deFouquet, Adapting geostatistical transmissivity simulations to finite difference flow simulators, Water Resour. Res., 32(10), 32373242, 1996.
  • Rubin, Y., Prediction of tracer plume migration in disordered porous media by the method of conditional probabilities, Water Resour. Res., 27(6), 12911308, 1991a.
  • Rubin, Y., Transport in heterogeneous porous media: Prediction and uncertainty, Water Resour. Res., 27(7), 17231738, 1991b.
  • Rubin, Y., G. Dagan, Stochastic identification of transmissivity and effective recharge in steady groundwater flow, 1, Theory, Water Resour. Res., 23(7), 11851192, 1987.
  • Rubin, Y., G. Dagan, Conditional estimation of solute travel time in heterogeneous formations: Impact of transmissivity measurements, Water Resour. Res., 28(4), 10331040, 1992.
  • Rubin, Y., A. J. Journel, Simulation of non-Gaussian space random functions for modeling transport in groundwater, Water Resour. Res., 27(7), 17111721, 1991.
  • Rubin, Y., G. Mavko, J. Harris, Mapping permeability in heterogeneous aquifers using hydrologic and seismic data, Water Resour. Res., 28(7), 18091816, 1992.
  • Sahuquillo, A., J. E. Capilla, J. J. Gomez-Hernandez, J. Andreu, Conditional simulation of transmissivity fields honoring piezometric data, Hydraulic Engineering Software IV, Fluid Flow Modeling, 2 Blain, Cabrera, 201214, Elsevier Sci., New York, 1992.
  • , Sandia National Laboratories,Preliminary comparison with 40 CFR Part 191, Subpart B for the Waste Isolation Pilot Plant, December 1991, vol.1,Methodology and results, SAND91-0893/1, Albuquerque N. M., 1991.
  • , Sandia National Laboratories,Preliminary performance assessment for the Waste Isolation Pilot Plant, December, 1992, vol.1,Third comparison with 40 CFR 191, Subpart B, SAND92-0700/1, Albuquerque, N. M., 1992.
  • Steel, R. G. D., J. H. Torrie, Principles and Procedures of Statistics: A Biometrical Approach2, 633, McGraw-Hill, New York, 1980.
  • Sun, N. Z., Inverse Problems in Groundwater Modeling, 337, Kluwer Acad., Norwell, Mass., 1994.
  • Sun, N. Z., W. W. G. Yeh, A stochastic inverse solution for transient groundwater flow: Parameter identification and reliability analysis, Water Resour. Res., 28(12), 32693280, 1992.
  • Townley, L. R., J. L. Wilson, Computationally efficient algorithms for parameter estimation and uncertainty propagation in numerical models of groundwater flow, Water Resour. Res., 21(12), 18511860, 1985.
  • Tsang, Y. Y. W., Stochastic continuum hydrological model of Äspö for the SITE-94 performance assessment projectRep. SKI-R-96-9, 80Swed. Nucl. Power Insp., Stockholm, 1996.
  • , U.S. Environmental Protection Agency, 40 CFR 191: Environmental standards for the management and disposal of spent nuclear fuel, high-level and transuranic radioactive wastes: Final rule, Fed. Regist., 50(82), 38,06638,089, 1985.
  • Yeh, W. W. G., Review of parameter identification procedures in groundwater hydrology: The inverse problem, Water Resour. Res., 22(1), 95108, 1986.
  • Zimmerman, D. A., J. L. Wilson, Description of and user's manual for TUBA: A computer code for generating two-dimensional random fields via the turning bands method, GRAM, Inc., Albuquerque, N. M., 1990.
  • Zimmerman, D. A., C. L. Axness, G. deMarsily, M. G. Marietta, C. A. Gotway, Some results from a comparison study of geostatistically-based inverse techniques, Parameter Identification and Inverse Problems in Hydrology, Geology and Ecology, J. Gottlieb, P. DuChateau, Kluwer Acad., Norwell, Mass., 1996.